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ABSTRACT 

This thesis extends the traditional notion of network management as an indicator 

of resource availability and utilization into a systemic model of resource requirements, 

capabilities, and adaptable allocations from a services perspective. Central to this model 

is a mapping of user information requirements onto measurable network attributes that 

can be used to evaluate levels of service. A monitoring infrastructure suitable to capturing 

and visualizing these attributes is also investigated. The outcome is a framework for 

understanding, measuring, and monitoring informational services in terms of their effects 

on a network. These results could be used to develop semi-automated and adaptive 

network monitoring and management suites that would support large-scale network 

centric operations. 
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I. INTRODUCTION  

A. OVERVIEW 

The modern military force is becoming increasingly networked, and what was 

yesterday an experimental supplement to existing operating procedures is today a 

fundamental capability. Unmanned Aerial Vehicles (UAVs) provide live Intelligence, 

Surveillance, and Reconnaissance (ISR) to localized forces on the ground; command 

centers located in the U.S. control ISR platforms thousands of miles away; and 

commanders monitor near-real time tracks of blue forces on the ground, in the air, and at 

sea. These capabilities are merely the tip of the iceberg. Developmental technologies for 

fusing geospatial, biometric, imagery, and other sensor data are providing levels of 

battlespace awareness previously unseen. All of these data sources need to be fed to 

various consumers for processing, analysis, and subsequent decision-making. 

As the number of data sources and data consumers increase, even the most 

capable networks will be taxed to deliver all users’ critical data in a timely and reliable 

manner. This prompts the need for mature network monitoring and management (herein 

collectively referred to as network management) technologies that enable administrators 

to monitor the usage of network resources and manage the allocation and prioritization of 

resources to different users’ Critical Information Requirements (CIRs). 

Current network management technologies are oriented toward the network 

administrator, who reasonably is most interested in metrics including bits or packets per 

second, link and path latency, and percent packet loss. However, these metrics only 

describe the aggregate effect of myriad data “flows” traversing each link that comprises 

the network. Industry standards such as the Simple Network Management Protocol (Case 

et al. 1990) are link- and path-oriented; the missing piece is the relationship between this 

layer of network performance and the application and services layers which describe the 

actual data flows that satisfy user CIRs. 
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In an ideal, futuristic network-centric operation, users would dictate their CIRs to 

the Global Information Grid (GIG) in real-time; these would be evaluated against 

available resources and information providers; and intelligent selection, prioritization, 

and adaptation would establish the best fit between all users’ requirements. This 

mechanism would be capable of not only prioritizing certain users or applications over 

others, which is similar to modern Quality of Service (QoS) technology, but also to both 

adapt application traffic to fit within available resources and modify the behavior of the 

network itself. 

This research work focuses on the “network awareness” aspect of this vision; 

namely, generating a holistic view of the network state, both in terms of capability and in 

terms of current load and user requirements. In particular, this thesis aims to elucidate the 

relationship between an operator’s view of a “service” and the network administrator’s 

view of “network performance,” and build a framework for describing network 

performance in terms of the specific services fulfilling user requirements, enabling both 

descriptive and predictive analysis at the services layer. 

B. MOTIVATION FROM NETWORK-CENTRISM AND SYSTEMS 
THINKING 

A major premise of this research is that effective network management is a 

critical element of Network-Centric Warfare (NCW). (Keshav and Sharma 2000) 

postulate that service quality is closely tied to the quality of network management. This 

view is reflected in core NCW literature, including (Alberts et al. 1999, 191):  

An infostructure must be properly managed to ensure that it is 
dynamically tuned to meet the warfighter’s needs. Enhanced capabilities 
for network operations will provide operational commanders with a real-
time picture of the status of the backplane. This picture, when combined 
with advanced capabilities for intelligent network management, will 
provide commanders with the flexibility to tune the infostructure and 
synchronize information transport and processing with military operations. 

Alberts et al. describe a “real-time picture” that aligns with the holistic network 

view discussed above. Their model exposes some of the requirements of such an 

instrument. The need for management implies that a network is an inherently scarce 
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resource; thus the role of a network-centric management system is to mediate all users’ 

CIRs against the resources available for fulfilling those CIRs. To do so, the capability, 

requirements, and usage of the network must be monitored in as near real-time as 

possible. Changes may occur so quickly that a comprehensive but high-latency 

monitoring tool will never yield timely and actionable information. This drives a 

requirement to find a suitably minimal set of data inputs to feed the network management 

model, minimizing the transmission and processing overhead required for management. 

The challenges of building models to describe dynamic systems are well-known 

to the field of systems theory. Unlike detailed complexity, where with sufficient data 

input and processing time nearly any calculation is possible, system thinking treats the 

existence of complex relationships between variables that make analytics difficult (Senge 

2006, 71): 

But there is a second type of complexity… situations where cause and 
effect are subtle, and where the effects over time of interventions are not 
obvious. Conventional forecasting, planning, and analysis methods are not 
equipped to deal with dynamic complexity. 

It may not be feasible to build a comprehensive, analytical model for the behavior 

of data networks. Not only does each node, link, and service have myriad descriptive 

parameters; the quantity, combination, and configuration of these components extend 

indefinitely within the bounds of physical and logical limits. The overabundance of 

potential data input greatly increases the challenge of finding a simple approach to 

assessing the state of the network. Moreover, the performance state of one network link 

may be dependent on traffic originating and terminating in distant parts of the network, 

adding to the subtleties of interaction. Finally, as pointed out in (Barford et al. 2001), 

each location in the network sees only a “projection” of the whole, making 

comprehensive data collection still more challenging. These obstacles indicate the need 

for a less comprehensive-analytical, more systemic-holistic approach to managing 

networks. 

This approach might be summarized in the term holistic network configuration 

management: a model of network services and resources that culminates in the depiction 
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of network behavior as it relates to its intended use. The Fault, Configuration, 

Accounting, Performance, and Security (FCAPS) management model (International 

Engineering Consortium 2007) approaches this concept by defining the overarching 

business process of network operations, focusing on the reduction of system and network 

downtime and maximizing availability of information resources. In this research, the idea 

of maximizing user levels of service is re-investigated, starting from current 

implementations of network management and drawing on emerging research as discussed 

in the next chapter to produce a new model of configuration management from a holistic 

perspective. 

C. ISSUES IN TODAY’S SOLUTIONS 

Modern network monitoring platforms focus primarily on two facets of network 

performance: reach and link performance. Reach refers to the ability of a given 

networked node to converse with other nodes within the same network. Ideally, any 

networked node can reach any other node; however, reach may be restricted for many 

reasons, including overloaded links, weak wireless link signals, improper device 

configuration, or device failure. Link performance, as stated earlier, is the aggregate 

effect of all traffic flows traversing a physical network link relative to the capabilities of 

that link. This can be further divided into range and responsiveness, reflecting the three 

dimensions of telecommunications services as defined in (Keen and Cummins 1994). 

When the network administrator is responsible for monitoring backbone 

infrastructure and the main concerns are accessibility of resources and gross resource 

utilization, these are appropriate aspects to monitor. However, when the network 

administrator is tasked with managing a rapidly-changing network both in terms of users 

and applications as well as the physical and logical topology, it becomes crucial to 

achieve a high-level understanding of network behavior and activity. Although existing 

network management solutions may be able to answer the who, what, and where of 

resource usage, none tie these back into the larger picture of describing and monitoring 

the needs of network users: their CIRs. 
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The same shortfalls apply to modern QoS techniques, most of which are 

accounting-focused. These approaches operate by dividing a static-sized available 

resource among a known set of nodes and services, ensuring that at no time are more 

resources obligated than are available. While this does accomplish the goal of managing 

finite resources, even prioritizing certain nodes and services over others, it entirely misses 

the point of a service-focused network. The centerpiece of the network should be the 

users and their CIRs, rather than the links that service those users. Contrary to the QoS 

model, it may not be reasonable to guarantee that resources obligated at one time will 

remain available at subsequent times; applications may need to adapt to changes in the 

network environment. Likewise, if certain CIRs are overtaxing the network, it may be the 

responsibility of the network to adapt to better accommodate those needs. In order to 

inform such an adaptive model, the bar must be raised on network management strategies 

to provide a stronger user- or service-focus. 

D. THE PATH AHEAD 

Motivated by the concepts of network-centricity and system dynamics, and 

understanding the gaps in modern network management methodologies, the goal of this 

thesis is to develop a conceptual and prototypical framework for holistic network 

management. More specifically, the aim is to create an integrated picture of services and 

infrastructure, where resources, services, and user needs intersect to create a usable, 

actionable depiction of network behavior and a means to assess its performance in terms 

of articulated CIRs. This work will provide a foundation for further research in adaptive 

networking and holistic network configuration management. 

One major gap that must be addressed is the relationship between a CIR and its 

underlying applications, and in turn between those applications and their effects on a 

physical and logical network. This research builds on existing studies of applications 

performance and layered network models, and leads to a framework for describing CIRs 

at a high level and translating those descriptions into measurable network properties. 

Using this framework, it will be possible to develop a measurement methodology that 

provides satisfactory awareness of CIR performance with minimal overhead. The product 
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of this thesis is a conceptual model of CIR description and translation, and discussion of 

measurement and visualization techniques appropriate to a holistic network management 

approach. This model should allow a network administrator to achieve awareness not 

only of how the network is behaving, but of how it is being used and how well it is 

satisfying its use.  
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II. LITERATURE REVIEW 

A. OVERVIEW 

The overall goal of this research is to translate operators’ CIRs (i.e., information 

requirements expressed from the viewpoint of the user) into concrete network 

requirements to be assessed against the live tactical network. The results must be 

gathered and presented in such a way that will neither overload the network nor 

overwhelm the user. To achieve this, both a model for translating information 

requirements and an appropriate measurement architecture must exist; although the 

measurement architecture is not defined by this research, its subsequent discussion 

necessitates a review of prior work. This chapter will review related academic literature 

as well as the contributions of industry, identifying both the foundations and the gaps that 

form the starting point for the contributions of this research. 

B. REPRESENTING USER’S REQUIREMENTS 

A major challenge of effective service-level network management has always 

been how to describe services as the end-user perceives them. This problem is identified 

repeatedly in academic literature (Parulkar et al. 1997) (Galetzka 2004). In attempting to 

build a management architecture, Parulkar et al. (1997) point out the difficulty of 

dynamic network adjustment due to “the fact that demands keep changing and are not 

completely known.” Fortunately, there is significant existing work in translating 

requirements at one layer into measurable properties at another. 

Research into Quality of Service architectures deals heavily with the mapping of 

services across layers. The International Telecommunications Union (ITU) has published 

several “recommendations” documents on this topic. ITU-T Recommendation G.1010 

(International Telecommunications Union, 2001) is referenced heavily in academic 

literature; this document describes several common types of traffic flows, ranging from 

video and audio streams to email and web browsing, and for each provides expected 

throughput as well as tolerance to packet loss, errors, latency, and jitter. This and similar 
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studies form a foundation for mapping application-specific traffic to generic network 

attributes, which is useful when the set of services is known in advance. 

Other research focuses on models for translation from application to network 

requirements. Nahrstedt and Smith (1994) present a model of network management based 

on requirements translation starting at the application layer; however, they feed their 

result into a QoS control loop rather than a monitoring capability. Their model defines in 

detail the relationships between various multimedia attributes (e.g., video resolution and 

frame rate) and complementing network attributes (e.g., bit rate, latency, and jitter). 

While their work is not exhaustive, it provides an excellent starting point for further 

quantitative study of these relationships. DaSilva (2000) complements their model with a 

study of QoS for packets where delay and loss are introduced at the data-link layer. He 

argues the importance of understanding how network behavior at lower layers affects the 

ability to guarantee service levels at higher layers. 

There has also been work done mapping the application layer onto higher layers, 

closing the gap on describing services from the human perspective. Guo and Pattinson 

(1997) define a four-layer model consisting of network, system, application, and user, 

and identify five categories of quality requirements spanning from traditional QoS 

metrics to subjective human-based qualities. Bauer and Patrick (2004) reference this 

model and build their own that extends the seven-layer OSI model (Zimmerman 1980) 

with three additional layers: human interface, human performance, and human needs. 

Although neither paper specifies the mechanics of these relationships, they create a basis 

for phrasing application and network requirements in terms of the user’s needs. As Bauer 

and Patrick point out, these extensions go beyond the definition of QoS, into what many 

researchers have termed Quality of Experience. 

Quality of Experience (QoE) is a term found in recent literature that discusses 

service-oriented measures of quality and performance. Although the precise definitions 

vary, QoE is in general terms the perceived experience by the user of the services that 

user expects to receive. A white paper by Polycom (O’Neil 2002) stresses that QoE “is 

the true litmus test” of an end-user’s experience. Since the typical end-user does not 

articulate service requirements in terms of bit rate or jitter, much of QoE research focuses 
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on enabling users to dictate their own requirements to the network and to interactively 

prioritize their needs. Siller and Woods (2003) discuss a resource arbitration system 

based on QoE, and conduct experiments using a tunable-knob approach wherein users 

manually vary parameters at the application and network layers to achieve the QoE they 

desire. Galetzka, on the other hand, builds a model for what he terms “user-perceived 

quality of service” (Galetzka 2004), which he relates to QoE. His model ties together the 

inter-layer mappings and effects as discussed earlier in (Nahrstedt and Smith 1994) and 

(DaSilva 2000) and the categorizations from (International Telecommunications Union 

2001), and creates four user-layer attributes that apply across all service types: 

availability, timeliness, accuracy, and affordability. He presents an example for a 

television programming guide service, defining these parameters within that specific 

context; however, he does not propose a generic framework for service parameter 

translation. 

Although models and examples abound, in order to implement QoE or other 

service-layer metrics on a large-scale network such as the Internet or Global Information 

Grid, there must be a general framework for describing services in terms of their 

requirements on underlying layers. Zhou et al. (Zhou et al. 2005) propose DARPA Agent 

Markup Language for QoS (DAML-QoS), an ontology for service semantics. DAML-

QoS is oriented toward matching web services with customers’ needs; each service 

request includes attributes such as service cost or response time, which are constraints 

that responding service providers must be able to satisfy. Their framework includes a 

notional measurement architecture for evaluating web services according to these 

metrics, and an ontology converter and reasoning engine to match available services to 

service requests. XQoS (Exposito et al. 2002) is another format for service specification; 

in their case, an XML schema that describes QoS requirements. For each component of a 

multimedia stream, the schema defines characteristics such as minimum reliability that 

must be met by the network. However, both approaches still rely on a heavy knowledge 

of network and application characteristics, leaving the translation from a true user-centric 

layer to the underlying layers an open field for study. 
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Regardless of the mechanics, once CIRs are translated into requirements for the 

network, these requirements must be monitored effectively so that the human operator or 

administrator, or an autonomous agent, can appropriately adjust the behavior of 

applications and of the network to suit the needs of all users. In order to accomplish this, 

the network must be outfitted with a suitable measurement architecture. 

C. THE GLUT OF MEASUREMENT 

When it comes to the broad field of monitoring network performance, there is no 

lack of metrics to assess and tools with which to capture those metrics. From polling of 

individual devices through SNMP (Case et al. 1990) to application traffic analysis with 

NetFlow (Claise et al. 2004), to active probing of network topology and link capacity 

(Jacobson), the network administrator might easily be overwhelmed with all the network 

performance data available. However, this assumes the right infrastructure is in place to 

capture that data. There are several approaches to network measurement and monitoring, 

each with its own benefits as well as costs. 

A classic approach to network measurement is device polling or probing: 

periodically asking each element of the network if it is alive, and for information about its 

state. This began with the Ping utility (Kessler and Shepard 1997) which assesses two 

metrics: whether or not the node being polled is alive, and how long it takes to send a 

message to that node and receive a response. Interestingly, these are still very common 

metrics used by network management suites including Solarwinds (Solarwinds). Variants 

of this measurement include Traceroute (Kessler and Shepard 1997) and Pathchar 

(Jacobson 1997), which measure the path taken between two nodes and the per-hop link 

capacity along that path, respectively. 

One step beyond basic probing techniques are device statistics-polling protocols. 

The Simple Network Management Protocol (SNMP) (Case et al. 1990) is a current 

standard for per-device data collection. SNMP provides access to each device’s 

Management Information Base (MIB), which is a collection of configuration fields and 

counters kept by the device. The interface MIB (McCloghrie and Rose 1991), which is 

maintained for each network interface on a device, has values such as packets received 
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and sent, bytes received and sent, and packet error counts. Proposed extensions including 

the SM MIB (Choi and Hwang 2005) monitor additional end-to-end path characteristics 

including packet loss and jitter. Solarwinds and other network management tools monitor 

SNMP data, providing one means of tracking the performance and behavior of the 

network. 

However, there is more to the network than what node and link measurements 

depict. These statistics do not reflect the behavior of individual applications. Cisco’s 

NetFlow standard (Claise et al. 2004) and Foundry’s sFlow both capture statistics on each 

flow traversing a router or other capture device. These statistics may then be analyzed 

and presented via collection systems such as Ntop (Deri and Suin 2000). Not only does 

this provide another dimension of network performance data, it is also a departure from 

the centralized polling model of SNMP and its kin. In the NetFlow architecture, each 

monitoring device captures and aggregates network data, periodically sending reports to a 

collection server. This has the benefit that if no traffic is traversing a part of the network, 

no reports are generated. 

Several researchers postulate network measurement models that incorporate these 

and other techniques to create a coherent view of network activity and behavior. Keshav 

and Sharma (Keshav and Sharma 1998) propose a lifecycle model of the network that 

includes topological discovery, monitoring, performance problem identification, 

configuration testing through simulation, and modification leading to a new network. 

Aside from simulation and modification, this model draws on all the techniques identified 

above; in fact, the authors propose integrating several existing tools to achieve the 

necessary data collection. Researchers at AT&T (Caceres et al. 2000) put forward another 

integral approach, in this case collecting ICMP, SNMP, NetFlow, and server log data into 

a data warehouse for wide-scale network analysis. Most of their research applications, 

however, are oriented toward data mining vice real-time monitoring of services.  

Other models have been proposed that diverge from the use of off-the-shelf tools, 

instead favoring a customized approach. Parulkar et al. (1997) lay out an architecture 

that, on the surface, looks similar to (Caceres et al. 2000) in that distributed data captures 

are gathered in a central data store. However, this particular approach is geared toward 
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real-time visualization and monitoring of network behavior. As such, they design 

dedicated probing nodes for data collection, distributing the need for processing power 

and reducing network overhead by only transmitting processed reports across the 

network. Estan and Varghese (Estan and Varghese 2003) recognize the scalability issues 

of tracking millions of discrete flows via technologies like NetFlow, and propose a 

scheme that only monitors flows over some threshold of link utilization. Their 

assumption is if there is a congestion point in the network, then it is most likely occurring 

because of large flows; therefore, tracking the behavior of these flows will lead to the 

problem area as effectively as tracking all flows, and with significantly reduced overhead. 

One common theme in nearly all approaches discussed above is resource 

overhead in network monitoring. For any measurement instituted, there is inherent 

processing, memory, and network utilization attached. Barford et al. (Barford et al. 2001) 

investigate this overhead and come to the conclusion that, given a relatively stable “core” 

infrastructure, increasing the number of network probes does not yield more useful 

network information. They focus on Traceroute, which is a relatively lightweight 

measurement, and demonstrate that for very large networks there is little gain in 

surpassing a few well-placed probes. Similar to the resource-conscious architecture in 

(Estan and Varghese 2003), this paper establishes an additional constraint on network 

monitoring architectures: they must not impinge on resources needed to conduct mission-

critical operations. 

D. CONCLUSIONS FROM THE REVIEW 

There is an abundance of interest both in translating user requirements into 

resource requirements and in measuring the network to evaluate the satisfaction of those 

requirements. Despite the depth of research already done in these areas, there is still 

significant ground to cover. There are many models for “Quality of Experience” and 

service-layer translation, but this work has mostly resulted in simple experiments or one-

off examples; a generic framework that applies across service domains is still needed. It 

is also clear that while many network measurement tools exist, one must choose carefully 

the set of metrics to capture in assessing service satisfaction; not all measurements add 
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value, but all add overhead. In the following chapters, these topics will be further 

addressed, and a framework will be laid out for generic service description, translation, 

and measurement within the tactical network domain. 
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III. DATA AND METHODS 

A. CONCEPTUAL UNDERPINNINGS 

From studying the strengths and weaknesses of existing network management 

models, some general requirements for a holistic model emerge, all centered on the idea 

of evaluating levels of service achieved vice network performance. To build a meaningful 

framework for service translation, measurement, and evaluation, it is important to 

formalize these requirements and define some concepts that will form the building blocks 

of this model. From these building blocks will emerge the framework for translating CIRs 

into attributes that can be measured and evaluated. 

1. Requirements for a Holistic Network Management Model 

There are five requirements this research identifies as crucial to creating the 

systemic-holistic (herein referred to as holistic) network management model described in 

the first chapter. The first three are functional requirements, which specify the objectives 

the model must be able to accomplish. The last two are quality requirements, which 

describe the way in which the model must work in order to be usable. Together, these 

requirements form the rationale for the architectural choices defined later in this chapter. 

First, the model must focus on the information needs of the individuals using the 

network, i.e., the set of CIRs. As opposed to models that focus on the accounting of each 

traffic flow or the utilization of each link, a holistic model must evaluate the capability of 

the network to deliver the services requested by its users, and present network 

performance problems in terms of the affected CIRs and all relevant portions of the 

network. Disparate CIRs that share underlying infrastructure may cause compound 

problems; this model should identify all services and network components related to a 

problem so that administrators can effectively pinpoint and correct the problem. 

Second, the model must be descriptive; that is, it must accurately depict the 

behavior of a network, given some set of input parameters. These inputs should be 
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sufficient to express the configuration of the network, i.e., its topology and capacity, and 

the activity on the network, i.e., the set of traffic flows traversing the network. Given 

these inputs, the model must correctly assess the performance of each CIR. In this case, 

configuration and activity data come from the measurement infrastructure, which is 

discussed later. 

Third, the model must be predictive. It must accurately assess the effects of 

proposed changes to the current, known network state. Here, all statements pertaining to 

the model’s descriptive capability apply; however, proposed changes must also be 

expressed as input parameters. This applies both to changes in network configuration, 

e.g., altering the characteristics of a link, and to changes in network activity, e.g., adding 

another CIR. The model must be able to provide the same resulting analysis for this 

hypothetical case as it would for the observed network. 

Fourth, the model must be solvable within a useful decision-making time cycle. In 

order to be usable, the model must provide updated information to the administrator 

within the human response cycle necessary for maintaining a serviceable network state. 

Put another way, it must be able to inform the individual about emerging conditions 

quickly enough that the individual can react and maintain acceptable levels of service. 

Van Creveld (1985) discusses this relationship between speed and effective command of 

forces; this carries over into the command of systems supporting those forces. This 

requirements places constraints on the types of models that may be used: certain types of 

simulation require many iterations to converge or predict a result; these may be 

inappropriate for generating high-speed results. There are also tradeoffs to be considered 

in the precision of the model versus its responsiveness. 

Finally, use of the model must not impinge on operational traffic. There is a 

wealth of measurement and assessment techniques available which may be leveraged to 

obtain any number of network performance metrics. However, as alluded to in (Barford 

et al. 2001) capturing and processing every possibly metric is both pointless as many 

metrics do not add value to the assessment, and obstructive as each additional metric 

collected detracts from the resources available to services. The model should only utilize 

measurements and computations that are necessary for accurately describing and 
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predicting service performance, and may make use of techniques such as “no news is 

good news,” only sending pertinent changes in network state. 

2. Defining the Building Blocks 

Analytical techniques break systems into their component parts, investigating the 

properties of each part separately. Systems thinking starts with the parts and studies the 

relationships between them that form the whole. Following in the latter tradition, this 

model begins with the definition of its elemental properties, and builds from there. 

If the “Service” or CIR is the highest concept in this model, the lowest is the 

notion of “Bits in Time.” This model proposes that all other network properties can be 

expressed in terms of X bits in Y time. A network requirement would then take the form 

of needing to communicate X bits within Y time. Bandwidth is a measure of the X bits 

per Y time, on average. Latency is the Y time it takes to communicate X=1 bit. Loss is 

XT – XR bits over Y time, where XT is the bits transmitted and XR is the bits received. 

The Bits in Time relationships for common network attributes are presented alongside 

with definitions based on relevant literature in Table 1. 

Attribute Common Definition Bits in Time Definition 

Throughput Average rate of bits 
between source and 
destination 

Average X bits in Y time 

Burstiness Variation in rate of bits 
between source and 
destination 

Distribution of Y time 
between X bits 

Latency Average time taken for 
bits to arrive at their 
destination 

Average Y time per bit 

Jitter Variation in time taken 
for bits to arrive at their 
destination 

Instantaneous Deviation 
in Y time per bit 

Loss Percent of sent bits that 
do not arrive at their 
destination 

XT bits sent minus XR bits 
received over Y time 

Table 1.   Network Attributes Defined as “Bits in Time” 
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This is similar to but distinct from the Service Level Agreements (SLAs) defined 

in (Clark and Gilmore 2006), which are of the form X percent of bits (or messages) in Y 

time. One of the fundamental notions of the Bits in Time model is that, assuming some 

level of connectivity and given enough time, all bits will get through. If reliable protocols 

are implemented, then any “lost” bit can be rescheduled and retransmitted, merely 

delaying the reception of that bit. Therefore loss is only characterized for bounded time. 

This introduces the second concept: each bit has value, and that value is time-dependent. 

In fact, it could be said that each bit’s value is a monotonically-decreasing function of 

time, which approaches zero at some critical “value deadline,” after which the bit no 

longer has value and may as well not be transmitted at all. Loquinov and Radha (2001) 

discuss this in detail as it applies to streaming video. 

Some simple examples can illustrate. A meteorologist may wish to forecast 

tomorrow’s weather; however, if the best model can compute that forecast in no fewer 

than forty-eight hours, that forecast will be of no value since the tomorrow’s weather will 

be known empirically by that time. Some streaming video protocols transmit each frame 

in a separate packet; if a packet misses its deadline for decoding then that frame is 

dropped and the video continues to play. Even if the packet was merely late to arrive due 

to high latency, it was effectively lost because it did not arrive while it still had value. 

Hence, loss is characterized within a finite timeframe, because bits have time-dependent 

value. 

The notion of bit-value has another meaning. If each CIR has value to an 

individual and each CIR is composed of bits carrying information, then each bit must also 

have some value to that individual. This relationship is complicated by the specific type 

of information the bit represents. As will be discussed later, different types of information 

have varying tolerances to loss, latency, et cetera. A missed bit in a video stream is of 

lesser consequence than a missed bit in a text message, indicating that the value of single 

bits is both information type- and context-dependent. However, collections of bits may 

still be quantified, or at least qualified, in terms of the value they potentially deliver to the 

recipient. 
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3. Links and Flows: The Basic Units of Network Configuration 

The physical-logical network consists of nodes, e.g., computers and routers, 

connected by links. Since modern computing systems process data at speeds far greater 

than typical network links, performance attributes need only be measured for links. Data 

travels from source to destination along a sequence of links, known as a path. The path 

has certain performance attributes that are based on the links that comprise it. For 

instance, the maximum one-way throughput of the path is theoretically the minimum of 

the throughputs of all links along that path. Path latency is theoretically the accumulation 

of all link latencies, plus minute overhead introduced by intermediate nodes. These 

aggregate performance attributes in turn affect the other basic unit of networks: flows. 

Flows are the applications network equivalent of links: they are the singular 

components which represent each independent stream of communication. Aggregates of 

one or more flows form a service, which is the instantiation of a CIR. Each service has 

value to the recipient of that service; likewise, each flow has a value to the service. Flows 

have performance attributes, here in the form of requirements, which utilize the resources 

of the paths along which those flows travel. Hence, there is a hierarchy of related 

attributes and requirements spanning from services to links, as depicted in Figure 1. 

 

Figure 1.   Hierarchy of Application and Physical Network Components 
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Each CIR is instantiated as a service, which in turn consists of distinct flows that 

carry information between endpoints on the network. These flows each traverse a specific 

path, which is comprised of links. Here the crucial point of comparison emerges: the 

network aggregate, paths, are attributed with certain capabilities; the services singular, 

flows, are attributed with certain requirements. Services have value to the individual, 

meaning that the capability of each path to effectively carry its respective flow affects the 

manifest value of the service. Taken one step further, each link, which may carry many 

flows along many paths, and which has finite capacity, affects the performance and 

therefore the value of each service it bears. The ability to evaluate the performance of 

services in light of these relationships will yield a holistic picture of both network and 

service performance. 

Such an approach has certain difficulties associated with it. The relationship 

between each flow-bearing path and the set of all underlying links is a complex mapping. 

Distinct flows between pairs of endpoints in seemingly distant parts of the network may 

share common links, putting those flows in competition for finite resources. Tabulating 

each combination of service, flow, link within that flow’s path, and every network 

attribute would take a matrix of several dimensions. Memory and computational 

requirements for evaluating both descriptive and predictive cases would quickly grow out 

of reasonable proportion. The fundamental notions of Bits in Time and bit-value 

deadlines, along with a language for describing CIRs in terms of component flows and 

those flows’ requirements, offer the possibility of a simpler way of expressing services 

and evaluating service performance. Building this language is the next requisite step in 

framing this model. 

B. TRANSLATING CIRS INTO BIT-TIME REQUIREMENTS 

Each CIR is an expression of an individual’s specific informational need over a 

particular period of time. It might be a video teleconference between generals, or the 

position and status of a neighboring fire team. If written in plain English, CIRs would be 

simple statements such as “live surveillance video from a Predator UAV flying over Al-

Anbar province from 1900-2300.” Explicit in these statements are data sources and 
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destinations, data types, and the time at which the CIR is required. Yet other important 

parameters remain implicit, such as value of this CIR to the requestor, component flows 

that constitute the service, and the relationships between network performance of the 

flows and the overall performance of the service. To make these parameters explicit, each 

CIR must be expressed in a definite language that consists of key terms understood both 

by operators and the network management system. 

The following scenario is used throughout this section to demonstrate the 

concepts of the proposed model: a watch-stander in the field wishes to monitor video 

surveillance from a UAV flying over a border area; the watch-stander needs to see any 

humans or vehicles attempting to cross the border. The UAV runs on auto-pilot while 

airborne, leaving the watch-stander responsible for controlling a gimbaled camera to 

sweep the border as the UAV flies overhead. 

1. Breaking CIRs into Flows and Service-Level Attributes 

A computable expression of a CIR must articulate both service-level requirements 

and descriptions of each component flow. Each flow must be described in terms of its 

performance requirements and the relationship between its performance and the value 

achieved. For instance, if the CIR for the scenario above is assessed and the video is 

providing two frames per second at low resolution, its value to the recipient may be lower 

than if video was providing 20 frames per second at high resolution. 
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Requirement Attribute 

How quickly recipient gets a file, email, etc. Responsiveness 

How near a recipient’s multimedia stream is to real-time Responsiveness 

How easily heard or seen is the party on the other end of 
a teleconference 

Clarity 

Ability to see movement and motion in video Clarity 

Ability to make out fine details in video or audio Clarity 

Not missing any important messages Reliability 

How frequently a unit’s status is updated Responsiveness 

How quickly a question is answered Responsiveness 

Not encountering hang-ups in a multimedia stream Reliability 

Table 2.   Typical Service-Level Requirements Expressed in CIRs 

Table 2 lists examples of high-level service requirements along with possible 

service-level attributes. These are the kinds of attributes the individual specifying the CIR 

may use to articulate requirements at a high level. Notice that these service-level 

attributes differ from network attributes such as throughput and loss, though they may 

map onto one or more network attributes. An important difference is that service-level 

attributes express qualities that the user experiences, whereas network attributes express 

underlying qualities that must exist to provide that experience. The way in which service-

level attributes map to measurable network metrics may be context-dependent and should 

be transparent to the user. 

Immediately, some of these attributes apply to the scenario. First, the watch-

stander likely cares that the video is near real-time, because watching video of a vehicle 

crossing the border several minutes after it actually happens is significantly less useful 

for tracking and intercepting that vehicle. Responsiveness is also important in a second 

way: the camera control messages sent by the watch-stander to the UAV must get 

through quickly in order to have a usable, interactive surveillance platform. The video 

must have clarity; being able to see the motion and details of people and vehicles on the 

ground is more useful than seeing small, unrecognizable blotches. Finally, there is a 
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requirement for reliability insofar as the video must be relatively smooth and have a low 

frame-drop rate. However, this requirement is not as strict, as some loss is acceptable for 

streaming video. Service-level attributes for the scenario CIR are shown in Figure 2, 

along with notional mappings onto network attributes. 

 

 

Figure 2.   Service-Level Attributes for a CIR 

The scenario CIR may consist of a few distinct flows: a one-time transaction to 

authenticate with and negotiate for control of the UAV camera; a continual stream of 

video; and periodic messages to control the direction and zoom of the camera. Each flow 

has performance attributes which aggregate to determine overall service performance. 

Since authentication and control negotiation will likely only occur once at the beginning 

of the service period, its responsiveness requirement is not very strict. However, it does 

have a strict reliability requirement; those bits must get through before the next step can 

proceed. On the other hand, the video stream itself can suffer some loss, but should be 

more responsive to guarantee near real-time coverage. Camera control has perhaps the 

most stringent requirements: it must be responsive as well as reliable. Slow response 

times will degrade the interactive quality of the system, whereas missed or erroneous 

messages will cause errant system behavior. Figure 3 shows service-level requirements 

mapped onto individual flows. 
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Figure 3.   Breakout of Service-Level Attributes for Flows within a CIR 

2. Mapping Flow Attributes onto Network Attributes 

It is the task of the translation framework to map these service-level attributes 

onto measurable, network-level metrics. Some of these relationships are complex; for 

instance, clarity at the service level is a function of resolution, frame- or sample-rate, and 

distortion or bit-error. These in turn map onto network attributes such as throughput and 

loss. However, other factors including delay and jitter contribute to increased loss and 

decreased throughput, complicating these relationships. Hence, understanding these 

relationships is critical to translating CIRs. 

There are several dimensions along which to distinguish types of flows. One is the 

burstiness of the flow, i.e., if it is singular, transactional, conversational, or streaming. A 

single DNS query would be transactional, whereas a voice call would be conversational. 

Most video flows are streaming, and singular flows apply only to one-off messages that 

require no response. Flow burstiness correlates with other attributes such as latency and 

loss. Singular and transactional flows tend to require low or zero loss, but often have 

more lenient latency requirements. Conversational and streaming flows such as voice 
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calls and video streams, tend to have higher tolerance to loss, but may need to have lower 

latency in order to maintain a near real-time requirement. (International 

Telecommunications Union, 2001) provides an elegant summarization of these 

dimensions in their own terminology in Figure 4. 

 

Figure 4.   Model for User-Centric QoS Categories (From: International 
Telecommunications Union 2001) 

The importance of other network attributes is less obvious, but they can be 

significant factors for some flow types. Jitter, the variation in latency, can cause 

individual packets to be exceptionally late to arrive and therefore miss their deadlines. 

Jitter has little effect on singular and transactional flows, but for streams that have real-

time requirements jitter leads directly to loss. Loguinov and Radha (2001) demonstrate 

that for low-bitrate streaming flows, jitter has nearly two orders of magnitude more effect 

on perceived loss than actual packet loss and constant latency combined. 

The performance attributes of each flow place requirements on the underlying 

network paths and their constituent links. In the scenario, all flows likely traverse the 

same path, but this is often not the case. Regardless, for each flow-bearing path, flow-

level requirements must be evaluated against available resources in order to determine 

service performance. In descriptive cases where all services are directly observed, this 

may be a simple matter of aggregating available performance data. One approach would 

be to accumulate the “sum” of all flow requirements, then compare this against the 
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aggregate of the capabilities of all links along the flow path. This is demonstrated for 

three typical network attributes in Figure 5. 

 

Figure 5.   Mapping onto Typical Network Attributes 

First, individual flow requirements must be aggregated and mapped onto the links 

and paths carrying those flows. Total throughput might be the sum of each flow’s 

required throughput; total latency and loss might be the minimums of all flows’ 

respective requirements. These requirements are then compared against the aggregate 

capability of the path. Figure 5 shows possible calculations of path attributes. 

This approach does provide a usable hierarchy from service-level attributes down 

to network performance metrics. However, it does not achieve the elegance desired for a 

holistic model, nor does it account for the achieved value of the service. A model that 

drills down to the essential dimensions common to all types of flows will yield a 

translation mechanism more suitable for a holistic management model. 

3. From Network Attributes to Bit-Time Curves 

A different formulation of network requirements uses distributions of bits over 

value deadlines. Rather than using typical network attributes which describe the average 

behavior for traffic flows, these distributions or “bit-time curves” describe the statistical 

behavior of the entire flow. Along the time axis (where zero is the time of bit 
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transmission) is a curve that represents the number of bits that must successfully transit 

the network by each time t. This forms a snapshot from the perspective of the source for 

any given moment, depicting for all bits originating at that moment the distribution of 

value deadlines. For flows that include both bits that must be received very quickly and 

bits that may take longer to arrive, the bit-time curve will more accurately represent the 

flow’s requirements than stating a single average throughput or latency requirement. An 

example bit-time curve is shown in Figure 6. 

 

Figure 6.   Example Bit-Time Curve for a Single Flow 

This representation follows suit with the Bits in Time model; the focus of network 

measurement becomes the time it takes for bits to reach their destination. A latency 

requirement is a requirement that bits do not arrive past a certain deadline. Likewise, a 

loss requirement is a statement that no more than a certain percentage of bits may fail to 

arrive before their deadline. All flow traffic is then viewed in terms of value deadlines: a 

latent bit becomes a lost bit if it misses its value deadline; a lost bit, if retransmitted 

successfully before its deadline, is merely late. 

Service-level attributes have effects on these curves. Figure 6 illustrates the 

relationships between some attributes and the shape of the curve. In order to increase 

clarity, more bits must be used to represent the information more precisely. This stretches 

the curve on the bits axis. Strict responsiveness requirements tighten the curve on the 

time axis. Reliability is more difficult to represent in the flow’s curve, but will be 
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represented in link capability. These curves may be derived mathematically, based on the 

relationships between network metrics and service-level attributes already understood 

qualitatively. However, bit-value curves can also be derived from empirical data and 

generalized by flow type and service-level requirements. 

The bit-time representation also allows for an elegant algebra for aggregating 

flow requirements into service requirements and link capabilities into path capabilities. In 

the case of flows, the aggregate of several flow requirements is the addition of their bit-

time curves, as shown in Figure 7. Since each flow’s curve describes the quantity of bits 

that must arrive by certain deadlines, adding flows together simply increases the quantity 

of bits due at their respective deadlines. This method can be used to determine the total 

capacity required of a link or path to support a given set of flows. It is important to note 

that, in practice, adding flows’ curves together is only useful for multiple flows that 

traverse the same network path; also, flow bit-time curves may feature non-linear 

properties that would complicate the literal mathematics of flow aggregation. 

 

Figure 7.   Aggregating Bit-Time Curves for Flows 

Links can also be described by bit-time curves. In their case, the curve generally 

starts at the origin, since zero bits can be transmitted in zero time. Over the minimum 

time that it takes for bits to transit from source to destination, the value of this curve 

remains zero, after which it steps or slopes to a constant positive value corresponding to 

the average behavior of the link. This value is determined by throughput, latency, loss, 

and any other parameters that influence the effective rate of bit transfer. In general, 

increasing the throughput increases this value, whereas increasing the latency and loss 

decreases it. An example bit-time curve for a single link is shown in Figure 8. 
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Figure 8.   Example Bit-Time Curve for a Single Link 

It is also possible to aggregate several link curves into a path curve, though the 

mathematical relationship would be different than that for flows. Combining link curves 

generally yields a smaller path curve; in part this is because the throughput of the path is 

no greater than the lowest throughput of any link. The curve will also be reduced because 

each link’s latency and loss accumulates, further decreasing the number of bits the path 

can successfully transfer in a given amount of time. An example of bit-time curve 

aggregation for a path is shown in Figure 9. 

 

Figure 9.   Aggregating Bit-Time Curves for Links 

Yet another interesting feature of this model is the ease of comparing flow or 

service requirements against link or path capability. The area under a bit-time curve over 

the interval [0, t] represents the bits required or transferred, respectively, within time t. 

This means that a flow’s requirements can be compared against a path’s capability simply 

by overlaying the integral of one curve over the integral of the other, evaluated over the 

time t of interest. In other words, 
0

( )
t
B t dt∫ where B(t) is a function that describes the 
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flow’s bit-time curve and t is the time elapsed since the origin of the bits. This process is 

depicted in Figure 10. The highlighted region, below the flow curve and above the link 

curve, indicates bits that are not received before their value deadlines. If all bits can 

transit the network by their deadlines, there will be no highlighted regions. 

 

Figure 10.   Comparison of CIR Requirements Against Path Capability 

As discussed earlier, the relationship between the percentage of bits that arrive by 

their deadline and the “value” of a flow or service is complex and highly context-

dependent. However, lacking a comprehensive analytical framework for each flow and 

service type, the highlighted regions can be thought of as detrimental to service value. 

The percentage of the total area under the flow curve that is not highlighted may be 

applied to a simple utility function specific to the service represented. This would provide 

a useful approximation of the value achieved by that service. 

Non-linear flow and link properties alluded to above as well as the complex 

mapping between individual flows and paths complicates the mathematical relationships 

involved in aggregating flows and links and comparing services and paths. The simplified 

mathematics presented here only illustrate that this model allows for combining 

elemental components of the model into aggregates and comparing those aggregates, 

which in itself demonstrates the power of the model to describe network configuration 

and behavior. However, follow-on research must be performed to elucidate the exact  
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nature of these relationships in order to guarantee accurate assessments. Potential 

approaches to these challenges, including fuzzy logic and artificial neural networks, are 

discussed in the final chapter. 

There is now a model for translating human-centric informational requirements 

into constituent flows, flow attributes, and finally bit-time curves that represent each 

flow’s traffic in a value-deadline context. This model is capable of mapping flow 

requirements onto path capabilities to evaluate flow performance, and from this 

determine the achieved value of a service. A conceptual view of the translation and 

comparison processes is given in Figure 11. 

 

Figure 11.   Evaluating a CIR Along a Specified Path Using the Bit-Time Method 
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Notice that there are two distinct sources of information feeding these processes. 

One comes from the user-specified CIR, which ultimately produces the bit-time curves 

for each flow. This process is discussed next. The other source, which generates the bit-

time curves for each link, is the measurement architecture discussed in the following 

section. Since the specification of flow bit-time curves comes from a disparate process, 

the discussion will now turn to the specification of CIRs. Specifically, how a non-

technical user is able to state information requirements in terms of services and flows and 

how those statements are translated into the inputs required by the proposed model. 

4. Creating the CIR Language 

Remaining is the specification of a CIR language based on the parameters 

elucidated from this discussion. These parameters are those shown in Figure 3 along with 

the essential properties of each constituent flow. The assembled model of a CIR is shown 

in Figure 12, and its components are described in the following paragraphs. 

 

Figure 12.   CIR Specification Model 

At the top level of the model are general requirements for the CIR; these are the 

kinds of service-level requirements shown in Table 2. These requirements are the primary 

way the non-technical user can specify their needs without having a deep understanding 
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of the network traffic that comprises their CIR. Service-level requirements act as 

parameters that adjust the bit-time curves for each specified flow. For instance, a 

hypothetical web browsing service may feature a responsiveness requirement that a web 

page loads within 10 seconds. This 10-second parameter would scale the time axis of 

each flow’s bit-time curve such that the value diminishes if all bits are not transferred 

within that timeframe. 

Under the global service level is a description of each constituent flow. There are 

three essential components that must be specified for each flow: the path it traverses, its 

bit-time curve, and its relationship to the overall value of the service. For networks 

without multiple redundant paths between nodes, a flow’s path can be derived from its 

endpoints. Network topology discovery mechanisms or human-inputted topological 

information can be used to determine the path. Flow curve descriptions may either be 

numerical parameters that define the shape of the curve or a classification of the flow 

type within a predefined set of curves. For the sake of this research, bit-time curves will 

come from defined classes of traffic based on empirically-derived flow characterizations. 

Service value relationships are defined by the combination of a utility function which 

relates the percentage of bits that arrive on-time to the percentage of flow value achieved, 

and a weighting factor that specifies the value of each flow to the overall service. For the 

purposes of this research, the utility function is represented by the linear 

functionV m P b= × + , where P is the percentage of bits that meet their deadline and V, 

the value to the service, is constrained within the range [0, 1] as shown in Figure 13. The 

variables m and b are calibrated for the particular flow type. 

 

Figure 13.   Utility Function Relating Bit-Time Evaluation to Level of Service 
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Taken together, these parameters form the fields of a data structure describing one 

atomic CIR. For illustrative purposes and as a baseline for testing conducted in the 

following chapter, a complete CIR language specification is defined here. There are 

technically two CIR data structures, one that represents the input required by the non-

technical end-user, and another that fills in the requisite information to complete the 

model shown in Figure 12. Both data structures are presented in XML syntax for the sake 

of familiarity. These are presented in Figure 14, applied to the scenario used throughout 

this chapter.  

 

Figure 14.   CIR Specification in XML 
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In the completed CIR specification on the right, all attributes from the CIR model 

are present. Service-level attributes are given by name and assigned some value; in this 

case, an integer on a scale from zero to 100, indicating the importance of that attribute. 

As noted earlier, these values may be used as scaling or weighting factors for the bit-time 

curves in individual flows. For each flow, the requisite information is provided. In this 

presentation of the model, bit-time curves have been pre-classified in their own 

taxonomy, and are referenced by name for each flow in the CIR. These types may assume 

a specific protocol, allowing a separate protocol field to be excluded. Start and stop times 

have been added so that an automated management system may know when CIRs will be 

in effect. 

The user-required input to the specified CIR is more terse, containing only those 

pieces of information both critical to building the complete CIR specification and 

knowable to the non-technical user. Service-level attributes have been reduced to a user-

specified “High,” Moderate,” or “Low,” though if an appropriate user interface exists, 

numerical values may be derived from user selections. As discussed in the final chapter, 

it may be possible to present different service levels in a way that makes appropriate 

attribute selections more intuitive. 

Flows are likewise simplified, specifying only the remote endpoint and the type of 

flow. Again, this alludes to the difference between what the user must know in order to 

articulate his or her requirements versus what must be known by the management system 

in order to effectively monitor the network. The endpoint and type of flow might be 

selected via an interface that allows the user to select service components from a list of 

assets and their corresponding capabilities. For instance, the asset named 

“uav145.navy.mil” would feature capabilities for surveillance-quality video and camera 

control. It may also feature other ISR and control capabilities that this user does not 

require. The interface would then translate the user’s selections into specific endpoints, 

flow types, and parameters based on the input given. It would also fill in pre-requisite 

flows, such as authentication. If desired, the user may be able to make any final 

adjustments to the completed CIR before it is submitted to the management system. 
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Along with the CIR translation process that produces bit-time curves for each 

flow, this CIR specification process builds a complete procedure spanning from user 

selection of information requirements and service attributes through production of bit-

time curves and configuration information essential to the management system. The two 

separate aspects of CIR specification and bit-time curve translation are also made explicit 

by this procedure. This is summarized in Figure 15. 

 

Figure 15.   Specification and Translation of a CIR 

The service specification and evaluation model presented here forms the crux of 

the holistic network management model proposed by this research. With the model 

established, it is appropriate to discuss how such a model would be implemented. The 

remainder of this chapter offers guidance on the architecture and implementation of both 

the underlying measurement infrastructure and the user interface and visualization 

capabilities necessary to making this model usable in an operational context. 
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C. MEASURING SERVICE PERFORMANCE 

1. Measurement Infrastructure Considerations 

Requirements for a holistic management model were described earlier in this 

chapter. Two of these requirements directly impact the design of measurement 

infrastructure: the management system must yield results in a useful period of time, and it 

must not interfere with operational traffic. Underlying both these directives and the 

broader technical requirements of such an architecture lay specific requirements which 

will be discussed here. 

Most techniques for measuring the capability of a network link require generating 

and sending test traffic over the link, often in large bursts. The frequency of these 

assessments directly and adversely impacts the performance of operational traffic. 

Finding ways to utilize minimal amounts of test traffic, or better yet operational traffic 

itself, for capability measurement is important for the usability of this architecture. Ideas 

for implementing these techniques are presented later in this section. 

The collection and processing of measurements is another area that can adversely 

affect operational traffic. If, for instance, the attributes of every link and every flow were 

transmitted across the network to one central management device once each second, 

constrained links could become overloaded by management traffic alone. Distributing 

collection to several topologically-scattered devices may mitigate these effects. Each 

device could gather measurement from network elements nearby, and summarize those 

measurements into the minimal information needed to be sent up to the next tier of the 

network. As shown in Figure 16, measurement nodes throughout the network could 

report to distributed management nodes, which in turn summarize measurement data and 

report to one or more centralized management nodes that collate and process 

management data from across the network. 
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Figure 16.   Topologically-Distributed Measurement Infrastructure 

Time synchronization, though less obvious, is one of the most critical factors. 

Some of the techniques presented in this section require cooperative measurement 

between devices. For instance, packets may be captured near the source and near the 

destination of a flow, to determine factors such as latency and loss along that flow’s path. 

In order to match packets between the two capture points, precise time synchronization is 

paramount. 

These provide general guidelines for designing the measurement infrastructure. 

The following sections describe in more detail the conceptual process of characterizing 

both flows and links as bit-time curves. Examples are given to illustrate the basic 

methodology; however, the specific tools and techniques are left for discussion in 

Chapter Four. Finally, the method of comparing a flow or service against a path and 

evaluating the level of service achieved is discussed in more detail. 

2. Characterizing Flows with Bit-Time Curves 

The proposed model does not perform live analysis of flow traffic to determine 

the level of service achieved. Rather, it relies on knowledge of both the flow’s 

requirements and the path’s capabilities expressed as bit-time curves in order to perform 

a comparative analysis that determines the expected level of service. As such, it is 
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necessary to have characterizations of each flow type to use in these comparisons. Since 

most flow types correspond to well-established protocols, an effective approach to 

baselining would be to build a library of known flows and their bit-time characterizations. 

This would be an offline process, happening prior to or in parallel with but separate from 

live network management operations. These characterizations could then be used for 

evaluating levels of service in real time. 

As discussed earlier, the bit-time curve for an individual flow represents a 

snapshot of that flow at any instant. At any given time, there should exist bits in transit 

from source to destination whose value deadlines statistically match the flow’s bit-time 

curve. The empirical characterization method builds this curve based on observation of 

flow traffic in ideal network conditions. For some flow types, the traffic observed under 

these conditions matches exactly the requirements for perfect service. Video streams, for 

instance, have strict value deadlines for individual frames of video; a late frame is a lost 

frame. Other types may provide more leeway in the arrival times of individual bits. If a 

single text chat message takes extra time to arrive, it may be unclear if any value is lost. 

In these cases some additional analysis may be required to determine the boundaries for 

achieving perfect service. 

Consider a simple video stream where each packet contains one video frame. 

Each packet is essentially a grouping of bits that arrives at the same time; loss, latency, 

and jitter could all be defined for packets rather than individual bits within a packet. 

Latency by itself is immaterial unless there are service-level attributes that mandate an 

upper bound on it; in plumber’s terms, the length of a pipe does not matter as long as 

enough water continues to flow through it. Jitter and loss are more important, since these 

cause individual bits to not arrive “on time.” Video receivers often employ a buffer to 

compensate for these effects. In the un-buffered case, all bits must arrive by a constant 

deadline in order to sustain smooth, clear video. The corresponding curve would have a 

single spike at that deadline. Conversely, buffered video can compensate for some 

percentage of bits that are late to arrive; the corresponding curve would change to 

represent one primary deadline, and a secondary later deadline based on the size of the 

buffer. Note that there are no lower bounds on the time at which bits must arrive. Bit-time 
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curves characterize the “no later than” time for each bit in transit; bits that arrive ahead of 

their deadlines have no negative consequences in this model. 

One way to empirically characterize a flow is to compare its traffic at both the 

source and destination. From this, it is possible to build a distribution of bit arrival times, 

which for flow types with little leeway will closely match the bit-time curve required to 

achieve perfect service. For flow types that are close to streams, the resulting curve will 

likely appear as a spike as described above. For bursty flow types, the curves may be 

more interesting, depending on the variation in acceptable arrival times of individual 

messages. 

Once a baseline exists for a flow type, simple parameterization based on service-

level attributes may be added analytically. As discussed earlier, most service-level 

attributes “stretch” the bit-time curve along either the bits or the time axis. Assume the 

video stream described above uses frames 100 kilobits in size and has a deadline at 500 

milliseconds in un-buffered mode; the bit-time curve will have a spike sized 

proportionally to the frame size and centered at that time. If the user wishes to increase 

clarity such that 200 kilobits per frame is used, the curve will stretch on the bits axis 

accordingly. Likewise, if the user imposes a bound of 75 milliseconds for responsiveness, 

the curve will contract on the time axis. However, in both cases, the basic shape of the 

curve will stay the same, since the essential relationships within the flow type remain 

unchanged. 

3. Assessing Link and Path Capability 

Similar to a flow’s Bit-Time curve, the curve for a link or path represents the 

number of bits that can transit from source to destination over time, starting from the 

moment when the bits are sent. Since there is always some latency, the value of this curve 

will be zero until the minimum time at which a single bit may have transited. 

Throughput, jitter, and loss also affect the shape of this curve. 

On the macro scale, the capability of a link or path can be evaluated simply by 

sending traffic from source to destination at the maximum possible rate, and measuring 

the number of bits that successfully arrive over time. Such a test by its nature would 
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account for average loss, jitter, latency, and throughput. However, this approach suffers 

from two limitations. First, it does not account for variation over time in the number of 

bits that are successfully sent; jitter is one important variable that fluctuates on the micro 

scale. Second, such an assessment would require the entire link or path to be utilized 

solely by test traffic for the measurement period, which violates the requirement of 

minimally impacting operational traffic. Hence, it is important to consider assessment 

options that adequately capture the capability of the network without adversely affects its 

operation. As the proposed formulation of link bit-time curves does not separate each 

performance dimension, this study is left for future research; this section focuses on 

capability assessment techniques that provide adequate information without negatively 

impacting operational traffic. 

(Prasad et al. 2003) discusses a number of techniques for assessing network 

capacity, or “bandwidth,” assuming only the endpoints of a path may have measurement 

capabilities such as specialized software. They categorize measurements into three types: 

capacity, the overall capability of the link or path; available bandwidth, the capacity not 

utilized by current traffic; and bulk transfer capacity, the effective throughput of a TCP 

flow. It also distinguishes between techniques that yield overall path measurements and 

those with granularity down to the individual links along the path. Table 3 summarizes 

their results. 

Metric Link Path 
Capacity Variable Packet Size Packet Pair/Train Dispersion 
Available Bandwidth n/a Self-Loading Periodic Streams 

Trains of Packet Pairs 
Bulk Transfer Capacity n/a Emulated/Actual TCP 

Table 3.   Capacity Assessment Techniques for Links and Paths 

Capacity is the metric of most interest to the proposed model, since the goal is to 

compare overall requirements of the network against overall capability of the network. 

However, capacity also comes with the caveat that most measurement techniques inhibit 

operational traffic from transiting the network at the same time as measurement traffic. 

Most techniques rely on precise timing of test traffic transiting from source to 

destination; operational traffic would interfere with these timings and skew the results. 
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Jacobson (1997) alludes to this difficulty, and accounts for it using a “min-filter” that 

removes variations in bit transit times. This technique does introduce some error; (Strauss 

et al. 2003) addresses these issues and presents a new tool called Spruce that is supposed 

to be both non-intrusive to operational traffic and more accurate. These tools are not 

assessed in this research, but the references provide insight for future implementers of 

this model. 

For the sake of comparing flow requirements against path capabilities, it would be 

possible to simply evaluate each path that bears one or more flows. However, as 

discussed in the next section, there is benefit to knowing network capabilities to the 

granularity of the individual link. A simple solution would be to use path measurement 

techniques for every link and every path; however, a more elegant and holistic solution is 

to periodically measure each link, and use the algebra of bit-time curves to build path 

assessments. If a path consists of three links, each with its own bit-time curve, those 

curves can be aggregated into a single bit-time curve as shown in Figure 9. There are two 

main attributes to these curves: the time t at which the first bit arrives, and the constant 

bit arrival rate. The former is determined by the latency of each link, and can be 

aggregated as Path l
l Links

L L
∈

= ∑ where L represents the minimum possible latency for a given 

link or path. This means the time t at which the first bit transits a path is the sum of those 

times for each link, which is represented in the bit-time curve by an apparent shift to the 

right. 

On the other hand, factors such as throughput, jitter, and loss aggregate in a 

reductive way. Each subsequent link in a path will at best have no effect on the constant 

arrival rate, since path throughput is at best the minimum of all link throughputs and link 

losses accumulate into path loss. Jitter is an additional stochastic latency on top of the 

constant minimum latency present on a link, so it too degrades the arrival rate of bits. The 

exact mathematical relationships between these attributes are complex and will be left for 

future study; the tests conducted in the next chapter utilize tools to estimate the bit-time 

curves for links and paths. 
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4. Evaluating the Level of Service 

As was discussed earlier, the level of service achieved is a function of both the 

requirements of the service and the capability of the path or paths supporting that service. 

This boils down to a comparison of each flow against the path carrying that flow, 

weighted by some utility function that defines the value of that flow to the overall 

service. As shown in Figure 10, the comparison involves integrating both curves and 

aligning them in time, such that the total bits required over the period [0, t] can be 

compared to the total bits transited over that same period. The comparative area under 

these curves reveals the performance of a given flow across a given path. 

Bearing in mind that both curves represent relative snapshots in time, the values at 

time t show for bits transmitted at any instant, how many are due at time t versus how 

many should arrive by time t. This raises the question of how far along the time axis the 

two curves should be evaluated. Figure 10 shows a case where at first the requirements of 

the service exceed the capability of the path, but over time the path catches up and 

exceeds the demand of the service. If the level of service is simply the ratio of 

highlighted area to total area under the service curve, the evaluation period chosen will 

impact the result. Without extensive experimentation, it is difficult to say exactly how far 

the curve should be drawn, but intuition says that it should go as far as the latest-arriving 

bit in the flow’s bit-time curve. This will produce a comparison of the complete behavior 

of the flow relative to the path carrying it. However, if the curve describes a bursty or 

stochastic flow where some bits are required in milliseconds and other are required in 

minutes, it may be necessary to limit the range that is evaluated to the point where 

majority percent of the flow’s bits are included. This should be part of further study on 

this model. 

Another interesting design question is whether to perform service evaluations 

strictly between flows and their corresponding paths, or to evaluate flows against each 

link within the corresponding path. Although path comparisons are useful for overall 

service evaluation, a holistic model should also be able to pinpoint specific bottlenecks 

and identify the relevant flows and links. This is what gives the network user an 
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advantage over traditional tools that report only aggregate performance metrics. To do 

this, it is necessary to know the capacity of each link, and to map each flow onto its 

corresponding links. This process is illustrated in Figure 17. 

 

Figure 17.   Mapping Flows onto Corresponding Links 

Two flows, S1D1 and S2D2, transit paths between source S1 and destination D1, 

and S2 and D2, respectively. The table shows the mapping of each flow onto the 

corresponding links Li in its path. Notice that both flows transit L3, indicating that an 

assessment of L3’s utilization requires aggregating both flows and comparing that against 

L3’s current capacity. If the capacity is insufficient to fully support both flows, not only 

will the levels of service for each flow be calculated correctly, it is possible to 

systematically pinpoint both the specific links degrading service performance and the 

particular flows being degraded. With this information, network users can take action to 

correct performance issues, either by adjusting the configuration of the network or by 

reducing their own usage, self-prioritizing their traffic in order to achieve the highest 

value possible in the given conditions. 

D. VISUALIZING THE NETWORK OF SERVICES 

The final though arguably most important piece of the proposed model is the 

human interface. Once all CIRs are translated, every flow is mapped onto its path and 

links, and all measurements are taken, the resulting analysis must be presented to some 

decision maker in order for any of this process to be useful. The best representation of 

service performance in the world, if not presented in a meaningful way, is of little use for 

effective network management. Although this research does not directly investigate the 
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effectiveness of service visualization, it is important to address this topic as it 

significantly impacts the usability of this model. This final section describes some of the 

challenges in visualizing a holistic network management model, and presents some 

thoughts on how to work toward a usable solution. 

1. The Problem of Holistic Visualization 

Many approaches exist for visualizing the performance of a network. Some tools 

use red-light green-light iconography to indicate whether or not a node or link is 

available. Others use gauges or graphs to indicate the amount of traffic transiting a link at 

any given moment. Yet others present matrices of source and destination hosts or ports to 

represent the patterns of usage on the network. However, very few approaches exist to 

present several network metrics simultaneously, let alone alongside representations of 

flow- and service-level performance. 

One of the difficulties is that each level has its own distinct set of attributes and a 

unique topology. At the network level, every computer, switch, and router is an element 

in the graph; each of these has performance attributes that affect the overall performance 

of the network. At the flow level, most devices fade from the picture, leaving only the 

endpoints of specific flows of traffic. Just mapping these two layers together can be a 

challenge; adding the services level is an onerous task. As shown in Figure 18, every 

layer has a distinct structure that can be difficult to represent in a single view. 
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Figure 18.   Network Topology at Each Layer 

Even within a single level, representing all attributes is a challenge. Just three 

common attributes such as throughput, latency, and loss would be a challenge to 

represent intuitively on top of the network topology depicted above. Perhaps the 

thickness of each line could represent throughput, and its length could represent latency. 

Loss is a difficult attribute to represent; it might be portrayed by dashed lines versus 

dotted lines, or by line color if that was not being used for something else. Already the 

obvious physical characteristics are taken, and flow and service performance is not even 

considered. It is clear that another direction must be taken to visualize this information. 

2. Promising Approaches 

Although no tools yet exist to holistically visualize a network of services, there 

are some noteworthy approaches already taken. A brief discussion of these may be 

insightful toward the design of future visualization techniques. 

Etherape (Ghetta and Toledo) is an application- or flow-level tool for visualizing 

the amount of traffic transiting between endpoints on a network. It presents all devices, 

listed by IP address, in a ring, and portrays each flow as a cone with the top at the source 

and the base at the destination. This gives an immediate and intuitive notion of which 

devices are sending and receiving the most traffic. The cones are color-coded to represent 

different protocols or flow types. Figure 19 shows Etherape running on a network. 
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Although Etherape is only designed for a single local area network, the architecture could 

be expanded using distributed measurement as described earlier to accommodate a larger 

internetwork. However, in its current design, it is difficult to align the visual placement of 

endpoints with the network topology. It also lacks a way to aggregate individual flow 

behavior into composite service behavior, and has no notion of link or path performance. 

 

Figure 19.   Screenshot of Etherape (From: Ghetta and Toledo) 

Big Brother (Network Uptime) is one of the matrix-style visualizations as 

mentioned above. One axis is the set of devices on the network; the other is the set of 

services supported by those devices, such as HTTP, FTP, and SMTP. The values within 

the matrix are color-coded symbols indicating the availability of each service on each 

device: whether or not it is supported, and if it is, whether or not it is accessible at that 

moment. Figure 20 shows Big Brother in action. This visualization by itself does not 

contribute to holistic performance monitoring; however, if these axes were changed to 

CIRs and their constituent flows, or flows and their corresponding links, then a color-

coded landscape indicating performance may yield useful information about the overall 

state of the service network. 
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Figure 20.   Screenshot of Big Brother (From: Network Uptime) 

Otter (Ma) is the most topologically-focused tool of the three. It combines a 

topological view with visual placement based on specified criteria. Figure 21 shows an 

example for latency along the paths to several devices. Using visual placement along one 

axis as a means of representing data is a novel approach to depicting performance data 

while maintaining visual information about the structure of the network. Color-coding of 

individual nodes provides an additional dimension of representation. Notice that the 

alignment of nodes on the vertical axis obfuscates the topology in a few places; it is 

important to consider the effects that each layer of representation will have on the clarity 

of every other layer. 
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Figure 21.   Screenshot of Otter (From: Ma) 

3. Future Directions 

A holistic network visualization tool must be simultaneously informative to the 

network user who wants to evaluate the level of service achieved for each of his or her 

CIRs and informative to the network administrator who wants to monitor the network and 

determine areas that require configuration changes or resource expansion in order to 

accommodate users’ needs. It must start with the highest level and report the achieved 

quality of every CIR active on the network, and be able to drill down into each flow, 

path, and link to provide timely and concise information about the performance and 

behavior of the network. 

This will likely require a layered approach, where different dimensions of 

information may be turned on or off as desired by the user. It is possible that a generic 

visualization engine that allows users to create their own customized views, mapping 

network and service data onto dimensions of placement, size, shape, and color, would be 

beneficial. Within the military domain, geographical information should be available, 

enabling the infrastructure to be overlaid on a map; this is especially useful in tactical 

wireless environments where devices are distributed across larger areas than would be the 
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case in a single building or facility. Finally, the user must at all times be able to quickly 

ascertain the state of the network, without sifting through disproportionate quantities of 

extraneous information. A minimalist approach to user interface elements such as menus 

and the ability to access critical information quickly should be driving design goals. 

Relating these requirements back to the Bits in Time model proposed earlier, the 

aggregation and comparison algebra of bit-time curves should be reflected in the 

visualization mechanism. This means both that services and flows must be depicted along 

with some graphical representation of their relative network requirements, and that links 

and paths must be presented in a way that denotes their relative capacities. Since the 

proposed model enables component requirements to be aggregated into composites of 

services and paths, it is possible that an appropriate visualization would allow the 

network topology to be expanded and collapsed along the same dimensions. A single 

node, representing a service and color-coded or otherwise marked to denote the current 

level of service achieved, could be expanded into a topology of vertices representing 

endpoints and edges representing flows along their distinct paths. These in turn could be 

marked similarly to the single service-node in such a way that intuitively presents the 

status of each service and each link. In order to achieve the drill-down capability that 

enables pinpointing network issues, each level could be expanded, breaking the 

composite service level shown at one level into the component service levels of each 

piece. 

Although stated as the most important aspect of this model, visualization is also 

the most briefly treated. This is in part due to the difficult nature of the problem: the 

multiple facets that must simultaneously be displayed, the requisite intuitiveness of the 

presentation, and the necessary ease of access to information that drives critical network 

management decisions. Rather than present an ill-formed solution within this research, 

the development of an appropriate visualization is left for future research and 

experimentation. The following chapter focuses on the specification and translation 

model presented in this chapter, and a preliminary discussion of the specific 

measurements necessary for service performance evaluation. 
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IV. TESTING AND RESULTS 

A. OVERVIEW 

1. Testing Goals 

The previous chapter laid out the requirements for and components of a proposed 

holistic network management model. It is necessary to test this model in order to validate 

its accuracy and viability. The model’s accuracy is tested to determine if the model 

correctly expresses the expected phenomena; specifically whether it satisfies the 

functional requirements defined in the previous chapter. Likewise, viability is tested to 

determine if the model is feasible to implement and utilize in real-world operations. This 

chapter documents preliminary testing of the model, and proposes changes to the original 

model based on lessons learned. 

These goals stated, only a subset of this model can feasibly be tested within the 

scope of this research. Many of the collection and analysis processes are simplified or 

performed manually in order to demonstrate the viability of the model and to assess its 

accuracy. This initial testing leads to some preliminary conclusions about and revisions to 

the proposed model, which are presented throughout this chapter and in the next. 

2. Testing Environments 

The tests performed on this model are divided into two parts: lab tests and field 

tests. These correspond with the testing goals of validating accuracy and viability, 

respectively. Lab tests are set up to demonstrate the concepts of the model in simplified 

scenarios, in order to test individual aspects of the model. Field tests follow to assess the 

usability and utility of the model in a live scenario simulating an operational 

environment. The following sections describe the configurations of these environments in 

detail. 
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B. CENETIX, TNT, AND MIO 

Testing was conducted utilizing facilities and experiments run by the Center for 

Network Innovation and Experimentation (CENETIX) at the Naval Postgraduate School, 

which is directed by Dr. Alex Bordetsky. Established in 2004, CENETIX conducts 

research into emerging network technologies as well as models of networking and 

collaboration. CENETIX supports two field experimentation programs on a quarterly 

basis: the Tactical Network Topology (TNT) at Camp Roberts, California, which is 

conducted in cooperation with U.S. Special Operations Command (USSOCOM) and 

directed by Dr. David Netzer at the Naval Postgraduate School; and the Maritime 

Interdiction Operation (MIO) experiment in San Francisco Bay, which is conducted 

jointly with Lawrence Livermore National Labs as well as other joint and coalition 

defense agencies. The MIO program is led by Dr. Bordetsky. 

C. LAB TESTING: CHARACTERIZING FLOWS AND LINKS 

1. Test Environment 

The initial lab test environment was as shown in Figure 22. It consisted of data 

sources, in this case video streams; one data receiver; a network link emulator; and traffic 

monitoring systems. It also included a time server for synchronizing data capture on the 

monitoring systems; this was to enable easy comparison of traffic near the sender versus 

the receiver. The primary flow of traffic is designated in the figure with bold arrows. 

For the first test, the goal was to assess a basic data flow traversing a simple 

network. Streaming video was chosen for the flow type since it uses a single socket 

connection and should have a simple bit-time curve, as opposed to complex, bursty, or 

stochastic flow types such as web browsing and text chat. Two video sources were to be 

used: a Pelco (Pelco Corporation) network video server attached to a live camera and a 

pre-recorded video served via VideoLAN media server software (VLC Team). Pelco 

video is accessible via a webpage, and is available either as MPEG-4 or an MJPEG-like 

“Server Push” mode. The pre-recorded video is accessible via the VideoLAN media 

player, and is available in several streaming video formats. 
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The network link emulator was introduced to create artificial constraints on 

network resources. This would enable testing the performance of the video under varying 

conditions, such as with increased latency, jitter, and loss, or decreased throughput. These 

tests used the NIST Net (NIST Net) network emulation software, running on a small 

form-factor Linux device. The device was set to act as a router, enabling network effects 

to be applied to traffic passing between the subnets on either side of the device. This 

device also featured a third network connection, used solely for managing the device and 

configuring the emulation settings. 

 

Figure 22.   Initial Lab Test Environment 

Traffic monitoring was performed using Wireshark (Combs). This enabled full 

traffic capture for subsequent quantitative analysis, as described in the following sections. 

2. Characterizing Video Flows 

The first test was performed with the Pelco video server using “Server Push” 

mode over a TCP connection. Early traffic analysis revealed that this mode used 

continuous HTTP GET requests initiated by the receiver for a JPEG still image resident 
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on the server; the effective frame rate of the video was bounded by the rate at which the 

client could execute HTTP transactions against the server. This led to very low frame 

rates, less than one frame every three seconds in some cases, which was not an acceptable 

baseline for performance comparison. It was also realized that the cycle of HTTP 

transactions would create a more complex flow to characterize than an actual video 

stream. 

At the same time, another problem was discovered. The time synchronization 

relied upon to assist in aligning sender’s and receiver’s traffic captures was not providing 

sufficient precision to accurately align the data. Every captured packet is timestamped; 

these times were to be used to determine the time between each packet’s origin and its 

arrival, thus establishing the effective bit-time curve for that flow under given network 

conditions. Data collected from the first test showed packets arriving at their destination 

before they were sent. Subsequent repeat tests and alterations to the time synchronization 

configuration did not yield any improvements. It became necessary to determine an 

alternative method of aligning packets in time. 

 

Figure 23.   Simplified Lab Test Environment 

Given these difficulties, the network topology was further simplified and the 

VideoLAN video server replaced the Pelco device. The simplified network is shown in 

Figure 23. MJPEG video over a UDP connection was chosen for the flow as this 

maintains an approximately constant bit-rate. Also, because the video does not use 

temporal compression and because UDP offers no traffic control, data loss at any moment 



 55

should not affect subsequent frames, and the sender will continue to transmit at a given 

bit-rate throughout the stream. Finally, the client was set up to not buffer video before 

playback; this would intensify the effects of adverse network conditions. 

To form a baseline characterization, certain network conditions were chosen to 

represent the ideal case. The emulator was configured to add 50 milliseconds of latency 

to all traffic in both directions, but not to constrain the network in terms of throughput, 

jitter, or loss. This is comparable to a lightly- to moderately-loaded wired internetwork, 

and is on the same order of latency as traffic traversing long distances across the Internet. 

The effective latency between the two endpoints was verified using the ping utility, as 

shown in Figure 24. An average round-trip time of 100.7 milliseconds corresponds with 

50 millisecond latency in each direction plus minute processing and queuing delays 

introduced by each device through which the packet passes. 

 

Figure 24.   Round-Trip Time as Determined by the Ping Utility 

The premise that enables this baseline characterization is that, for un-buffered 

video, there is no leeway for adverse network effects if perfect service is to be achieved. 

Without a buffer, any jitter, loss, or other effect that inhibits packets from arriving at a 

constant rate and in the correct order will cause noticeable defects in video quality. In 

other words, the bit-time distribution observed when the video is at peak quality is 

exactly the bit-time curve required to achieve that quality. To find this curve, traffic 

captures were taken on both the source and destination devices, and those captures were 

compared statistically to find the distribution of packet transit times. Using traffic 
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captures exported from Wireshark and a simple text-processing script, the transit time for 

each packet was tabulated as shown in Table 4. 

Source Time Checksum Destination Time Checksum Absolute Delta Adjusted Delta
21:01.361 0x4ecb 21:00.739 0x4ecb 00:00.622 00:00.051 
21:01.365 0xf60d 21:00.742 0xf60d 00:00.623 00:00.050 
21:01.369 0x23c7 21:00.746 0x23c7 00:00.623 00:00.050 
21:01.373 0x7aaf 21:00.751 0x7aaf 00:00.622 00:00.051 
21:01.376 0xc577 21:00.753 0xc577 00:00.623 00:00.050 

Table 4.   Sample Packet Transit Times from Baseline Test 

The source and destination times are the absolute times reported by the respective 

traffic captures. Notice that the destination times predate the source times, giving rise to 

the synchronization problems discussed earlier. Checksums are codes used in packets to 

verify the integrity of the packet from source to destination; they are based on the content 

of the packet, so it is unlikely for two consecutive packets to have the same checksum. 

These were used to align the messages from the source capture with those from the 

destination capture. The absolute delta column shows the absolute value of the difference 

between the source and destination. Since these are known to be inaccurate, it was 

necessary to devise a method of adjusting the deltas. The adjusted delta column uses the 

average absolute delta and the observed round-trip time from Figure 23 to calculate the 

adjusted delta. The formula for this is
2Adj Dst Src Abs

RTTD T T D= − + + . As shown in Table 

4, the adjusted delta values are on the order of the expected 50 milliseconds, though 

individual packet variations are preserved. The distribution of packet transit times, 

zoomed into the peak region, is shown in Figure 25. 
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Figure 25.   Distribution of Packet Transit Times 

As predicted in the discussion from the previous chapter, un-buffered video in a 

low-jitter network forms a tight spike around the average latency of the path; in this case, 

just over 50 milliseconds. Interestingly, there is a small secondary bump just more than 

one millisecond later. Even without a buffer, video performance was without noticeable 

blemish even with some packets arriving slightly later than the bulk of the flow. 

It turns out that this curve should have the same shape as the bit-time curve for 

this flow. In order to correctly express the bit-time requirement of the video, the area 

under the curve by any arbitrary value deadline must equal the number of bits that must 

transit within that period of time; this adjustment simply requires multiplying by a scalar 

that represents the bit-rate of the flow over that time period. To determine this quantity, 

the average number of bits arriving over the period from the earliest arrival to the latest 

arrival on the curve in Figure 25 is determined from captured traffic. The area under the 

curve is then adjusted to match the result. From the traffic capture, the average bit rate is 

known to be 1,408,070 bits per second. If this amount of traffic were spread over 

millisecond intervals, it would be 1,408 bits per millisecond. Applying that rate over the 

arrival time distribution produces the curve shown in Figure 26. 
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Figure 26.   Bit-Time Curve for MJPEG Video Stream in Lab Test 

3. Characterizing Link Capacity 

The factors that affect a bit-time curve representing link capacity are the minimal 

or average link latency and the effective throughput of the path over time. Latency 

determines the time t at which the first bit arrives, and throughput determines the value of 

the curve on the bits axis after time t. These factors are illustrated in Figure 27. 

 

Figure 27.   Mapping Network Factors onto Link Bit-Time Curve 
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Any appropriate network capability measurement technique can be used to find 

this curve. In-depth discussion of measurement methodologies is presented in the 

previous chapter; for this testing, a simple emulated traffic test using Iperf (Tirumala et 

al.) was used to determine capability. Iperf sends a specified rate of traffic from a given 

source to destination for some period, evaluating the effective throughput, jitter, and loss 

of that transfer. A simple ping can be used in addition to determine link latency. For the 

sake of simplicity, Iperf was run across the entire path rather than for each link. The 

results are shown in Figure 28. 

 

Figure 28.   Results of Iperf Path Measurement with 100 Megabit-per-Second Traffic 

The effective throughput, or “bandwidth,” shown takes jitter and loss into 

account; otherwise it would be necessary to analytically account for those effects. It is 

also important to note that for these tests the attempted bit-rate was 100 Megabits per 

second, which is the theoretical maximum speed of the Fast Ethernet links used; some 

loss is expected as this exceeds the actual speed of the path. From the results shown in 

Figure 24, the latency is known to be approximately 50 milliseconds. In order to 

represent the bit-time curve, the effective throughput in bits per second must be spread 

over the area under the curve for that time period; this is given by bps
Interval

T
T

t
= . It is 

important that ∆t is identical for the flow and the link or path. For this case, the 

granularity is in milliseconds, so 0.001t = . This gives the path bit-time curve shown in 

Figure 29. 
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Figure 29.   Bit-Time Curve for Path in Lab Test 

4. Accuracy of Service Description and Prediction 

If the bit-time curves depicted in Figures 26 and 29 were compared using the 

method described in the previous chapter, the path curve should exceed the flow curve, 

since the performance of the flow was considered perfect. This is depicted in Figure 30.  

 

Figure 30.   Comparison of Flow and Path Bit-Time Curves 

Notice that the scale of this graph is logarithmic; the path bit-time curve exceeds 

the flow bit-time curve by at least half an order of magnitude at any time. This 
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corresponds with both the observed performance of the video and the captured data. The 

data indicated that the video required an average of 1.4 Megabits per second versus the 

measured path throughput of 38.2 Megabits per second. This appears to demonstrate that 

the model accurately describes both flows and links, providing valid results for a known 

case. 

The other necessary test is of the model’s predictive capabilities. For an altered 

set of circumstances, such as a diminished path capability, the model should predict a 

drop in service level. Two cases were tested: first, the path latency was increased from 50 

milliseconds to 75 milliseconds; second, a five-second jitter was added to the 50-

millisecond constant latency. In both cases, the video was observed and perceived quality 

is known. The test is of how well the model predicts the relative service levels in these 

cases. 

In the case where the latency was increased to 75 milliseconds, the effective 

throughput should have remained the same, but the path bit-time curve should effectively 

shift to the right due to the greater path latency. The observed throughput from an Iperf 

was 38.1 Megabits per second, approximately the same as the first test. Figure 31 shows 

this bit-time curve. 

 

Figure 31.   Path Bit-Time Curve for 75 Millisecond Latency 
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Comparing this curve with the flow’s bit-time curve revealed the first discrepancy 

in the model. If the two curves were directly overlaid as shown in Figure 32, it would 

appear that there is a large deficiency in service performance with the link curve lagging 

far behind the flow curve; however, the observed video was of high quality, albeit with a 

slightly higher latency. This elucidates the point that some deficiencies determined by the 

bit-time comparison method predict or describe noticeable quality defects, while others 

predict or describe service-level deficiencies such as latency that may not be noticeable to 

the user. 

 

Figure 32.   Comparison of Flow and Path Bit-Time Curves 

In the second case, where five milliseconds of jitter were added to the constant 

50-millisecond average latency, visible defects in video quality were apparent. The Iperf 

measurement is shown in Figure 33; due to technical issues with the computers used, this 

measurement was done subsequently with different computers. Although the effective 

throughput shown was actually higher than those in the baseline and first test cases, it can 

be considered analogous for the purposes herein. A marked increase in jitter is observed, 

though the throughput has increased and the loss has decreased due to the change in 

environment. 
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Figure 33.   Results of Iperf Path Measurement with Jitter Added 

Observing the video stream, there was noticeable frame loss as well as the 

introduction of artifacts in most frames, significantly obscuring the video. Interestingly, 

the path bit-time curve for this case does not predict these effects. Based on a ping test, 

the average measured latency was still 50 milliseconds, and the effective throughput 

should have been sufficient for the video. The only telltale sign that performance was 

degraded was the message in the Iperf results indicating that over 83 percent of packets 

were received out of order. For UDP video streams, packet arrival order is extremely 

important to video clarity; the introduction of stochastic jitter to a steady flow of data 

could easily cause this phenomenon and lead to quality defects. This was not reflected in 

the path bit-time curve or the bit-time comparison, which would look nearly identical to 

those in Figures 29 and 30, respectively. It is clear that there are additional performance 

factors the current formulation of link and path bit-time curves does not take into 

account. Possible revisions to the bit-time curve model will be discussed in the 

conclusions. 

D. FIELD TESTING: ABILITY TO ARTICULATE SERVICES 

1. Overview 

The previous section tested the ability of the Bits in Time model, formulated as 

bit-time curves for flows and links, to describe and predict service performance for basic 

cases. This section complements that testing with a brief study of the ability of the CIR 

specification language described in the previous chapter to adequately specify actual 

information requirements or services that might be required in an operational 

environment. Due to the conceptual nature of the proposed model and the lack of existing 
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CIR monitoring tools, this section reports the results of a conceptual study done based on 

the network and application environment present in the Maritime Interdiction Operation 

(MIO) experiment conducted in September 2007. Although quantitative results were not 

attainable, the exemplar cases presented here portray actual services as understood from 

MIO experiment data. 

2. MIO Experiment Network 

MIO experiments are conducted in the San Francisco bay area, utilizing Yerba 

Buena Island (YBI) as a base of operations and local police and U.S. Coast Guard vessels 

for the maritime experiment platforms. The purpose of MIO experiments is to test ship-

to-ship and ship-to-shore network technology along with collaborative information-

sharing applications toward the end of increasing the speed of decision-making in 

maritime threat scenarios. These scenarios involve ships carrying suspect personnel and 

cargo approaching a port city, and the interdiction process that ensues. Various means of 

collaboration, including text, voice, and video, are combined with network-enabled 

radiological and biometric sensors to enable faster and more effective sharing of data 

between boarding personnel on the ships and subject matter experts on land. 

From a physical network perspective, the MIO network consists of a backbone of 

broadband wireless links stretching across the bay area, ultimately tying into Internet 

connections at Lawrence Berkeley National Labs and Coast Guard Island. These sites 

also provide Virtual Private Network (VPN) tunnels back to NPS, and via NPS to several 

other partner organizations within the U.S. as well as in foreign countries including 

Sweden, Austria, and Singapore. During the September experiment, the primary 

operating areas were inside the bay and directly outside the Golden Gate Bridge, where 

teams on two interdiction vessels boarded respective target vessels to perform mock 

searches for radiological materials and suspected terrorists. An additional operating area 

on Mare Island, simulating riverine operations, was added for the first time. A high-level 

view of this infrastructure is provided in Figure 34. 
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Figure 34.   MIO Experiment Network Topology (From: Bordetsky et al. 2007) 

From an applications perspective, the MIO focuses primarily on collaboration and 

information-sharing tools. Some of the desired information types include text chat, voice 

calls, live video, file sharing, and text-based discussion groups. Each of these functional 

capabilities is supported by one or more collaborative applications used within the MIO 

experiment. These tools connect the boarding parties that are performing the detection of 

nefarious cargo and persons with decision-makers and analysts on shore who can assist in 

processing the data collected throughout the interdiction experiment. 

The specific information requirements dictated by each participant in these 

scenarios determines the set of CIRs that must be articulated to a holistic network 

management system in order to effectively monitor the services present and needed on 

during the interdiction. Two of these CIRs were chosen as exemplars for study. The first 

is Microsoft Groove, a collaboration tool that enables chat, file sharing, discussion 

groups, and many more information sharing mechanisms. Second is the set of live video 

feeds that provide real-time awareness to decision-makers away from the interdiction. 

Both of these are discussed in greater detail in the following sections. 
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3. Exemplar Case 1: Collaboration Suite 

Groove (Groove Networks) is a collaboration suite designed to provide a virtual 

office environment for geographically-distributed teams. Each team may create one or 

more “workspaces,” each of which constitutes an atomic collaborative space. A 

workspace may include a combination of collaboration and work management tools, such 

as task managers, discussion groups, file sharing, and group-wide text chat. Groove also 

provides a presence mechanism to inform a user of whom else is online or current using 

their workspace, and an individual-to-individual text messaging system. A screenshot of 

Groove in use during the September MIO experiment is given in Figure 35. 

 

Figure 35.   Groove in use during the MIO experiment 

The underlying communications model utilizes both client-server and peer-to-peer 

channels to relay messages and updates to the virtual workspaces; each client 

synchronizes its current version of the workspace based on the latest updates from other 

members’ workspaces. Although each user’s current snapshot of the workspace is 

available offline, in order to maintain a synchronized state and to receive new text 

messages, both channels of connectivity must remain open. Therefore, Groove is an ideal 
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candidate for study in terms of a CIR: it consists of several underlying flows, each with 

its own parameters and requirements. An example of this topology is shown in Figure 36. 

 

Figure 36.   Groove Service Topology 

Presume that the CIR for collaboration via Groove is to be defined for the user at 

YBI. The user must define a CIR that accurately describes both the service-level 

attributes and the flows required to achieve the desired collaboration. Relevant service-

level attributes in this case would be reliability and responsiveness: reliability in terms of 

ensuring all updates to the workspace arrive, and responsiveness in terms of all updates 

arriving in a timely manner. Due to the nature of this service, reliability is a strict 

requirement; any bits that are lost are a detriment to the level of service. However, bits 

that are late may or may not negatively impact the level of service, depending on the 

user’s need for those particular bits. For instance, an update to a shared file that the user 

does not need does not have a responsiveness requirement, but a single text message sent 

to that user containing urgent information may have very stringent responsiveness 

requirements. This may pose a challenge to describing the service with a single CIR. 

Suppose that all workspace synchronization occurs via the client-server 

connection and has moderate responsiveness requirements. This means that all shared file 

updates, discussion group posts, and task manager status changes would be sent by the 

individual clients to the server, and then propagated to all other clients. In contrast, 
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suppose all individual-to-individual messages are sent peer-to-peer and have high 

responsiveness requirements. In this case, the flows may be distinguished by different bit-

time curves; however, the challenge of unifying service-level attributes remains. Figure 

37 depicts the user-required CIR inputs for this service. 

 

Figure 37.   User-Required CIR Inputs for Groove Service 

Assuming a translation mechanism as described in the previous chapter that can 

fill in the exact endpoints and service- and flow-level numerical variables, this should 

form a complete description of the Groove service. It depicts flows to each client for 

peer-to-peer traffic and a single flow to the server for workspace updates. The latter flow 

type is assumed to fall within the broader category of record transfers, much like an 

HTTP or DNS request: every time content in the workspace is updated, updates will be 

propagated to each client and acknowledgement of receipt will be returned. Since 

service-level attributes are scaling factors applied to each flow, this may be a sufficient 

description. However, one remaining issue is the complete enumeration of peer clients. A 

single Groove workspace can accommodate dozens of users, and users may be added to 

the workspace at any time. This being the case, a CIR that accounts for all Groove-related 



 69

traffic would itself have to be dynamic in order to describe all possible flows over time. It 

may be necessary to add a capability to this model to express a generic flow that does not 

have an explicit remote endpoint, but rather that expresses a bit-time curve that is the 

composite of a group of flows. 

4. Exemplar Case 2: Live Video 

Part of achieving situational awareness between geographically-separated sites 

within the experiment involved establishing live video links between each participant. 

Boarding parties with portable cameras fed video into online conference rooms so that 

decision-makers could see their live progress and gain a better understanding of the 

situation as it developed. Likewise, the command center posted its video along with 

several remote sites such as Sweden, enabling each participant to have improved 

awareness of the overall operation. 

 

Figure 38.   Video Sharing Tools 

The two primary mechanisms used for video sharing were Pelco devices and 

internally-developed web-based virtual video conference room software; both are shown 

in Figure 38. Pelco devices were accessed directly via a webpage and used HTTP-

encapsulated video streams. The conference room tool was centralized on a single server, 

which acted as a relay between senders and receivers. It too was accessed via HTTP, but 
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in this case the video was sent in Flash video format. This created a complex network 

structure ideal for study, a subset of which is shown in Figure 39. 

 

Figure 39.   Video Service Topology 

Although each video feed might comprise its own CIR in a real-world operation, 

this discussion assumes that the CIR is operational awareness in the form of live video of 

all participating sites. The service-level attributes of this CIR are uniform across all video 

streams to comply with the CIR specification model. As discussed in the example from 

the previous chapter, this CIR contains implicit flows that will not become stated until the 

user-inputted CIR is translated by the specification interface. For instance, both the Pelco 

and the video conference video feeds are accessed via web pages. It is not clear from the 

CIR shown in Figure 40 that these implicit flows exist. The flows from cameras to the 

video conference server are also implicit. Ideally, the flow type taxonomy would carry 

with it knowledge of these dependencies. Mapping flow dependencies and creating a 

taxonomy of flow types may be a suitable sub-topic for future research in this area. 
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Figure 40.   User-Required CIR Inputs for Video Service 

Since the example flow types used here are categorized by function and not by 

protocol, it is not clear that two of these video feeds are sent in higher-quality MPEG-4 

video format and two are sent in lower-quality Flash video format. This makes a 

significant difference to the network management system as each protocol has its own 

resource requirements and thus different bit-time curves. It is unclear whether revising 

the taxonomy to specify the protocol is the better answer, or if an additional field in the 

translated CIR specification is needed to articulate this. Finally, like in the Groove 

example, it is possible for the number of clients in the video conference room tool to 

change over time. This reinforces the need to be able to articulate generic flow groups or 

classes that scale based on the number of active flows at any time. 

E. FURTHER EXPERIMENTATION 

The testing documented in this chapter raised several questions about the 

proposed model. Lab testing exposed uncertainties regarding the characterization of 

complex flow types and the assessment of flow performance in varying network 

conditions. Other challenges arose during the field testing, including combining widely 

varying flow types in a single CIR, sets of flows within a single service that change over 

time, creating a taxonomy of flow types that adequately describes differences between 
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similar protocols, and hidden dependencies between flows. These unanswered questions 

form starting points for future experimentation on the proposed model. 

Future experiments might be categorized into two parts: Bits in Time model 

validation and refinement, and CIR specification validation and refinement. The model of 

characterizing, aggregating, and comparing bit-time curves requires further study to 

validate its accuracy in various conditions. Characterizing more complex flow types may 

expose areas of improvement to the model, simultaneously building the library of known 

flow types. Likewise, the CIR specification model should be tested in different 

environments and stretched to its limits, so that a refined model will emerge that has 

superior expressive capability. Taken together, these improvements should enable the 

proposed model to be a useful tool for holistic network management. 
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V. CONCLUSIONS AND FUTURE WORK 

A. MAJOR CONCLUSIONS FROM RESEARCH 

In an era of ever-increasing networking capability, both in terms of information 

available to the user and of resources available to carry that information, new ways of 

managing networks are becoming critical to day-to-day operations and to maintaining 

information superiority in the face of new threats. Traditional approaches that focus on 

delivering perfect service to a limited number of users over a fixed set of network 

resources cannot handle the imminent emergence of network-centric applications that 

operate in frequently imperfect conditions. Dealing with less than perfect service quality 

and managing a network where the set of available resources change on the order of 

minutes, not months, is the emerging business model for network operations in the 

tactical environment. 

The aim of this thesis is to illuminate this issue and address the concept of holistic 

network management in a tangible, graspable way that can form a basis for further 

research in this burgeoning field. A model is presented that connects the highest level 

concept of a user-articulated service with the lowest level concept of bits with deadlines 

traversing the network. This model describes a concrete language for depicting a user’s 

critical information requirements in terms that the user can understand, while still 

maintaining the descriptive elements critical to managing and monitoring those 

requirements. At the same time, it provides an algebra for expressing the atomic elements 

of the network configuration, flows and links, in terms of a single descriptor, and for both 

aggregating and comparing those descriptors in a way that allows assessment of the 

overall level of service. 

It is clear that the work is far from finished. The specification of CIRs is 

rudimentary and requires improvements to address the issues raised in the previous 

chapter. Likewise, the bit-time curves proposed do a proficient job of articulating certain 

kinds of traffic requirements, but are not yet suited to many types of flows. The 

relationship between certain network effects and their corresponding curves also requires 
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clarification. However, the capacity of the model to express high-level requirements in a 

way that could be translated into lower levels and simultaneously to measure low-level 

metrics and generate a higher level assessment shows that this model has interesting 

properties that merit further study. 

B. DIRECTIONS FOR FUTURE RESEARCH 

This research work presents a framework for tying distinct flows of data together 

into user-oriented services, and for comparing network requirements of those services to 

the capability of the network infrastructure that carries those services. Many new 

concepts are introduced, including the mapping of service-level requirements onto 

network attributes, the Bits in Time model of network performance, and various 

measuring and visualization techniques. Each of these areas exposes additional topics 

open to future research work. Some of these topics are illustrated below for the 

consideration of those wishing to pursue further research in this area. 

1. CIR Translation and Evaluation Frameworks 

Although this research offers an interesting, if not novel, approach to describing 

and computing network performance, it leaves unresolved many of the difficult 

mathematical relationships involved in the algebra of bit-time curves. Other branches of 

mathematics and computer science may be incorporated into this model to address these 

challenges. One example is the application of fuzzy logic to network and service 

performance. (Zhang and Zhu 2005; Yaghmaei et al. 2006; Wang et al. 2006) all describe 

applications of fuzzy logic to QoS problems; it could also be formulated as “fuzzy” levels 

of service based on “fuzzified” network attributes. Essentially, fuzzy logic is a branch of 

mathematics that extends the notion of set theory by allowing a single entity to have 

partial membership of multiple sets. In other words, it is possible to have somewhat high 

bandwidth and simultaneously mostly medium bandwidth; the amount of latency partially 

belongs to both the high and low sets. Figure 41 illustrates the membership function for a 

fuzzy variable; this is adapted from an example given in (Crnkovic-Dodig). 
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Figure 41.   Examples of Fuzzy Membership Functions 

There are two primary components and four main steps to a fuzzy logic problem. 

One component is the collection of membership functions for each input and output 

variable; the input variables are shown in Figure 41. The “crisp,” or exact, values of 

throughput and latency are “fuzzified” into partial memberships of each fuzzy set during 

the first step of the process. Although the mapped fuzzy values are normalized in this 

example, normalization is not a requirement for fuzzy math. The other component is the 

set of rules for mapping input variables onto output variables, which are used during the 

evaluation step. Rules are standard “if-then” statements that map input sets onto output 

sets. The set of rules is shown in Table 5.  

 

1. If Throughput is Low, then Performance is Poor 

2. If Throughput is Medium and Latency is High, then Performance is Fair 

3. If Throughput is High or Latency is Low, then Performance is Good 

Table 5.   Fuzzy Rules 
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Take the second rule; this uses two input variables to compute the output. In fuzzy 

set theory, “and” means to take the minimum of the two inputs, whereas “or” means to 

take the maximum. So in this case, since ThoughputMedium = 0.7 and LatencyHigh = 0.4, 

PerformanceFair = Min(0.7, 0.4) = 0.4. Unlike rigid rules, where only the first or closest 

match is evaluated, all fuzzy rules are evaluated and then aggregated, as denoted by the 

highlighted region in Figure 42. 

 

Figure 42.   Aggregation of Evaluated Fuzzy Rules 

Of course, finding this region does not by itself provide actionable information. 

Computers and humans alike operate best with something quantitative. In the final step, 

techniques such as taking the center of mass of the highlighted region are used to 

estimate the “crisp” value of each output variable. 

An interesting piece of research would be to apply a fuzzy model of service to 

complement the Bits in Time model, and compare the projections against user 

perceptions of service. Like the Bits in Time model, fuzzy logic provides an attractive 

algebra for expressing multiple dimensions of network attributes. It is not clear how 

service requirements would be compared against network capability; defining such a 

comparative technique would itself be an interesting piece of work, possibly drawing on 

other related applications of fuzzy logic (Zhang and Zhu 2005; Yaghmaei et al. 2006; 

Wang et al. 2006). 

Another relevant technique taken from computer science is the application of 

artificial neural networks and case-based reasoning to treat the complex relationships 

between bit-time curves as patterns with outcomes that can be learned. Bordetsky et al. 

(2003) discuss the introduction of feedback controls and case-based reasoning memory 
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into QoS-enabled multimedia networks. For instance, in networked teleconferences there 

is a Call Preparation Control mechanism that establishes the quality of connections 

during a teleconference session. In their paper, this mechanism is equipped with a case 

memory to learn from previous sessions how to recognize and respond to certain 

configuration patterns in order to achieve the best possible level of service. Applied to 

CIR translation and evaluation, these techniques may enable the holistic management 

system to recognize certain combinations of flow types, or certain network effects, and 

apply known patterns to the aggregation and comparison of bit-time curves. This might 

be tested in a way similar to that proposed above for fuzzy logic. 

2. Tools for Selecting Service Quality Levels 

Even with a hierarchical model that defines service-level attributes abstracted 

from the network level, asking a user to define their requirements in terms of clarity or 

reliability is difficult. Experience can help by providing templates for certain services in 

certain operational contexts, but there is still room for a friendly user interface for 

specifying these requirements. Imagine an intelligence imagery feed; live pictures of a 

monitored site with known high-value targets are fed across the network to a remote 

command center. Although having high-resolution fast-updating imagery would be 

anyone’s desire, the acceptable minimum level of service depends on the usage of that 

imagery. For instance, will it be necessary to identify any of the entities in the image, 

such as people or vehicles? Is it more important to know the fact that a person entered or 

left the building, or is important to see which direction they walked to get in or out of it? 
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Figure 43.   Criteria for Varying Quality of a Video Stream 

As shown in Figure 43, different levels of service allow the user to see different 

things, and there is a cost associated with each level according to the network resources it 

consumes. It may be useful to build a user interface that presents multiple versions of a 

particular service, depicting both the difference in quality and the cost of each version. If 

the cost is portrayed in terms that matter to the user (e.g., ability to support their services 

as well as conduct conference calls, et cetera), such a tool may be useful in convincing 

users to select reasonable vice best case settings. This tool could be defined for different 

types of service, calibrated to users’ needs in a variety of contexts, such as surveillance, 

command and control, collaborative communications, and so forth. 

3. Improving Measurement Techniques 

There is a lot left to be done in this area. This research proposes the infrastructure 

for measurement, but leaves many aspects open-ended. One area of contribution is 

network topology discovery. All experimental work done herein required a priori 

knowledge of every link in the network. In future network-centric operations, the task of 

mapping every link within a single, highly-mobile unit, let alone the complex 

interconnections between joint and coalition forces, would take a heroic effort. 

Offloading this task onto autonomous distributed agents that scan the network, noting 

both topology and performance characteristics, would greatly accelerate the process of 

calibrating the service performance model to the network at hand. There are many 

existing protocols and techniques for general-purpose and task-specific network 
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discovery. Cisco Systems uses their own discovery protocol for finding the connections 

between switches and routers; many routing protocols can automatically converge a large 

set of interconnected routers into a coherent routing tree. Evaluating and synthesizing 

techniques for this application is a necessary task for making holistic network 

management feasible in real-world networks. 

Accurate measurement of link and path performance attributes is another area 

worthy of further study. As pointed out in (Prasad et al. 2003), there are a variety of 

techniques for measuring network capability, each with its own level of accuracy and cost 

in network transmissions; however, some measurements, such as per-link available 

bandwidth, are still elusive. Many network characteristics can be measured for an entire 

path, or per link, just using the path endpoints. Certain per-link measurements can only 

be assessed by agents installed at intermediate routers. Determining the minimal set of 

measurements necessary to determine the capability of the network, and defining the 

appropriate measurement infrastructure, is a useful research task. 

The proposed model was created with certain kinds of services in mind, such as 

surveillance video and text messaging. These services utilize flows that are either 

constant, or statistically periodic. Other services consist of complex sets of flows that are 

difficult to express with the Bits in Time model and other similar methods. The Groove 

office collaboration tool, which is used heavily in TNT and MIO, is a good example. 

Groove is centered on the synchronization of files, discussion boards, whiteboards, et 

cetera between individual instances of the application. The network requirements are 

entirely dependent on the user activity within each instance of the Groove workspace, 

making a statistical description very difficult. Services where the service-level quality 

attributes change frequently or depend heavily on the specific sub-task at hand are also 

difficult to depict with such models. Testing the Bits in Time model with these types of 

services and extending the model as needed adds versatility to the technique. 

4. Visualizing Service Performance 

The best network management model in the world is not very useful to users if all 

they have to look at are lists of number without any meaningful context. Creating a 
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graphical interface that portrays service performance in a way that is both meaningful and 

actionable is arguably just as valuable as the management model underlying it. Current 

representations of network state and performance focus on network reach and link 

utilization. Reach is often represented with red-light, green-light indicators, either in a 

listing of important nodes or overlaid on an image depicting the network topology. 

Solarwinds (Solarwinds) takes this approach. Link utilization is generally portrayed via 

speedometer-like graphics, or maybe color-coding applied to links in a graph that 

illustrates the network. 

However, when the important data are performance metrics for services between 

many machines across a complex network, with each endpoint having many connections 

to other endpoints, and each type of flow running between several pairs of endpoints 

simultaneously, portrayals using meters and color-coding are hardly sufficient. The 

prototype interfaces used for testing in this thesis are only meant to demonstrate the kinds 

of data that would be used by the proposed management model. There is a whole thesis 

worth of research to be done strictly on how to graphically represent a network of 

services, each of which contains one or more flows with their respective network 

performance characteristics. 

5. Service Adaptation 

Raising the level of network management from a bits-focused view to a services-

focused view is a major step toward holistic network management. Once the ability to 

monitor services exists, the next logical step is to apply this newfound service awareness 

to intelligent management of network resources. Adaptive networking is a field of study 

that focuses on adapting both the network configuration and individual flows in order to 

achieve a state of acceptable performance for every user on the network. 

An overview of adaptive networking is presented in (Clement and Bordetsky 

2006). Adaptive networking approaches vary, but generally fall into categories. First, 

there are techniques that focus more on adapting flows to match available network 

resources by gracefully degrading their quality. For instance, the resolution or frame-rate 

of a video feed may be reduced so that the network requirements of the flow are within 
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the available capacity of the network path. Other approaches focus on adapting the 

behavior of the network to better accommodate the requirements of the services present. 

This may involve combining similar flows along the same path into one flow that meets 

each flow’s demands, such as two requests for the same video, but each with different 

resolution requirements. 

Adaptive networking techniques may also be categorized by the level of 

involvement on the part of the applications and the users. Some approaches are 

application-aware; that is, the application itself negotiates with the network for resources 

and adapts its behavior according to the resources allocated to it. Application-transparent 

approaches provide the same functionality, except that network agents negotiate on 

behalf of the applications, and adapt application traffic in a way that is “transparent” to 

that application. Human-aware techniques place users in charge of making decisions 

about their own usage, informing them of the constraints of the network to provide them 

with services. 

A study of these approaches, and the benefits of combining these with holistic 

network monitoring techniques, would take network management to a new level, 

enabling users to specify their needs and allowing the network to intelligently manage 

and provide the best possible service even when all requirements cannot be fully 

satisfied. 
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